Skip to yearly menu bar Skip to main content


Poster

Switched Flow Matching: Eliminating Singularities via Switching ODEs

Qunxi Zhu · Wei Lin


Abstract:

Continuous-time generative models, such as Flow Matching (FM), construct probability paths to transport between one distribution and another through the simulation-free learning of the neural ordinary differential equations (ODEs). During inference, however, the learned model often requires multiple neural network evaluations to accurately integrate the flow, resulting in a slow sampling speed. We attribute the reason to the inherent (joint) heterogeneity of source and/or target distributions, namely the singularity problem, which poses challenges for training the neural ODEs effectively. To address this issue, we propose a more general framework, termed Switched FM (SFM), that eliminates singularities via switching ODEs, as opposed to using a uniform ODE in FM. Importantly, we theoretically show that FM cannot transport between two simple distributions due to the existence and uniqueness of initial value problems of ODEs, while these limitations can be well tackled by SFM. From an orthogonal perspective, our framework can seamlessly integrate with the existing advanced techniques, such as minibatch optimal transport, to further enhance the straightness of the flow, yielding a more efficient sampling process with reduced costs. We demonstrate the effectiveness of the newly proposed SFM through several numerical examples.

Live content is unavailable. Log in and register to view live content