Skip to yearly menu bar Skip to main content


Poster

Generalization Analysis of Deep Non-linear Matrix Completion

Antoine Ledent · Rodrigo Alves


Abstract: We provide generalization error bounds for a deep matrix factorization problem with Schatten $p$ quasi norm constraints. In the uniform sampling regime, the sample complexity scales like $\widetilde{O}\left( rn\right)$ where $n$ is the size of the matrix and $r$ is a constraint of the same order as the ground truth rank in the isotropic case. In the distribution-free setting, the bounds scale as $\widetilde{O}\left(r^{1-\frac{p}{2}}n^{1+\frac{p}{2}}\right)$, which reduces to the familiar $\sqrt{r}n^{\frac{3}{2}}$ for $p=1$. Furthermore, we provide an analogue of the weighted trace norm for this setting which brings the sample complexity down to $\widetilde{O}(nr)$ in all cases. We then present a non linear model, Functionally Rescaled Matrix Completion (FRMC) which applies a single trainable function from $\mathbb{R}\rightarrow \mathbb{R}$ to each entry of a latent matrix, and prove that this adds only negligible terms of the overall sample complexity, whilst experiments demonstrate that this simple model improvement already leads to significant gains on real data. We also provide extensions of our results to various neural architectures, thereby providing the first comprehensive uniform convergence PAC analysis of neural network matrix completion.

Live content is unavailable. Log in and register to view live content