
Map Building without Localization
by Dimensionality Reduction Techniques

Takehisa Yairi yairi@space.rcast.u-tokyo.ac.jp

Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 1538904, Japan

Abstract

This paper proposes a new map build-
ing framework for mobile robot named
Localization-Free Mapping by Dimensional-
ity Reduction (LFMDR). In this framework,
the robot map building is interpreted as
a problem of reconstructing the 2-D coor-
dinates of objects so that they maximally
preserve the local proximity of the objects
in the space of robot’s observation history.
Not only traditional linear PCA but also
recent manifold learning techniques can be
used for solving this problem. In contrast
to the SLAM framework, LFMDR frame-
work does not require localization procedures
nor explicit measurement and motion mod-
els. In the latter part of this paper, we will
demonstrate “visibility-only” and “bearing-
only” localization-free mappings which are
derived by applying LFMDR framework to
the visibility and bearing measurements re-
spectively.

1. Introduction

Most of the recent studies on mobile robot map build-
ing have employed the problem formulation of simulta-
neous localization and mapping (SLAM) which states
the problem of estimating both robot states and object
positions from a series of sensor measurements(Thrun,
2002). In fact, efficient algorithms for solving SLAM
have been developed and used in many mobile robot
products. We have no objection to the significance and
value of these SLAM studies. However, we should not
jump to the conclusion that other robotic map building
paradigms than SLAM are meaningless. Especially,
we would like to raise the following two fundamental
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questions about the robotic mapping research:

• First, isn’t it possible to estimate the positions
of objects (or features) directly from observation
data without explicitly estimating the robot’s pose,
whereas mapping and localization are treated as in-
separable in SLAM ?

• Secondly, isn’t it possible to build maps only with
weaker prior knowledge than the usual measure-
ment and motion models, whereas those models are
indispensable in SLAM ?

Based on these motivations, this paper proposes an
alternative framework for robotic mapping named
Localization-Free Mapping by Dimensionality Reduc-
tion (LFMDR). Intuitively, LFMDR is based on an
idea that closely located objects tend to share similar
histories of being sensed by a robot. More specifically,
LFMDR attempts to find 2-D coordinates of objects
so that they maximally preserve the local proximity
of them in the space of robot’s observation history.
To obtain a low-dimensional representation (2-D co-
ordinates) of objects from the high-dimensional obser-
vation data, not only traditional linear methods such
as PCA but also non-linear dimensionality reduction
techniques so called manifold learning methods can be
utilized.

Compared with SLAM, LFMDR as a robotic mapping
framework has remarkable features such as indepen-
dence from self-localization of a robot, and lower re-
quirements for prior knowledge. That is to say, it is
able to build a map without estimating the robot’s
pose nor using measurement and motion models ex-
plicitly. Nevertheless, for the present, we must admit
the cost of these advantages is not small. LFMDR is
basically an off-line process, whereas most of SLAM al-
gorithms work online. In addition, it requires a larger
amount of observation data than SLAM at the expense
of abandoning motion and measurement models.

In the latter half of this paper, we present visibility-
only and bearing-only localization-free mappings which
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are derived by applying LFMDR framework to visibil-
ity information and bearing measurements of objects,
respectively.

2. Related Works

2.1. SLAM

To clarify the characteristics of LFMDR which is ex-
plained in the next section, we briefly reconsider the
formulation of SLAM(Thrun et al., 2005). Though
SLAM is applicable to various map representations
such as occupancy-grid and topological (graph-based)
maps, we consider only feature-based maps here. This
means a map is represented by 2-D coordinates of a
finite number of objects or features. We hereafter use
the following notation.

• xt : robot’s pose (state) at time t.
• m = {ξ1, · · · , ξM} : map (positions of M objects)
• ut : robot motion command executed at time t

• yt : sensor measurements obtained at time t

The relationships between the variables are expressed
by the state transition and observation equations:

xt = f(xt−1, ut−1,m) + vt (1)
yt = g(xt, m) + wt (2)

where, vt and wt stand for disturbance and ob-
servation noise, respectively. Note that these
state transition and observation equations can be
represented in the form of probabilistic motion
model, p(xt|xt−1,ut−1, m) and measurement model
p(yt|xt,m). Then, the goal of SLAM is to esti-
mate both the history of robot’s state {x1:N} up to
time N and map or 2-D coordinates of M objects
m = {ξ1, · · · , ξM}, when the histories of observations
{y1:N} and commands {u1:N−1} are given. Specifi-
cally, this is conducted by estimating the posterior dis-
tribution p(x1:N ,m|y1:N , u1:N−1) or finding x1:t and
m which maximize it (MAP estimation). As is widely
known, several approaches have been developed for
solving SLAM problem including EKF applied to the
extended state [xt,mt] (Leonard & Feder, 1999), al-
ternate estimation by EM algorithm (Thrun et al.,
1998), and Rao-Blackwellized particle filter (Monte-
merlo et al., 2002). In any case, these SLAM meth-
ods assume that motion and measurement models, i.e.,
functions f and g in equations 1,2 are explicitly pro-
vided beforehand, and have to estimate the robot’s
state xt at each time step even if we only want to ob-
tain a map m. In contrast, LFMDR does not require
these assumptions.

2.2. Dimensionality Reduction

Dimensionality Reduction (DR) is a main topic in
multivariate analysis whose purpose is to find a low-
dimensional representation of high-dimensional input
data. DR has also been a central theme in a vari-
ety of fields such as pattern recognition, datamining,
and so on. Principal Component Analysis (PCA) is
the most basic and widely used DR technique and
its relationships with Multidimensional Scaling (MDS)
and Singular Value Decomposition (SVD) is known.
In addition to the linear DR methods, non-linear
DR techniques called spectral manifold learning algo-
rithms(Saul et al., 2006) have been actively studied in
recent years.

These dimensionality reduction techniques have been
successfully applied to various learning problems in-
cluding classification, regression, clustering, and sys-
tem identification. Especially, several studies at-
tempting to apply DR techniques to the localiza-
tion and mapping problems have been reported re-
cently(Ham et al., 2005; Bowling et al., 2005; Ferris
et al., 2007). They proposed methods of estimating
low-dimensional representations of sequential states
(or traces) of robots or mobile devices from temporal
sequences of high-dimensional measurement vectors.
These works demonstrated the possibility of localiza-
tion without mapping, and can be regarded as a coun-
terpart of our argument in this paper that mapping
without localization is possible. In other words, their
methods treated the measurements at different times
as data points to which DR techniques are applied,
whereas we treated the historical observations about
different objects as data points. Another example of
applying DR to map building can be found in (Brun-
skill & Roy, 2005), which applied mixture-PPCA to
range measurements to extract low-dimensional geo-
metric features (line segments). (Pierce & Kuipers,
1997) also used PCA to obtain low-level mappings be-
tween robot’s actions and perceptions. While these
two works used the DR techniques for estimating some
”local” structures which are essential for mapping, we
used them for recovering a global map of objects.

3. Mapping by Dimensionality
Reduction

In this section, we formalize the idea of LFMDR. To
do this, we make a few assumptions about the map
building problem we consider here. First of all, we
consider the feature-based mapping, and ignore the
issue of data association by assuming all objects in the
environment are uniquely identifiable by the robot’s
sensors. We also assume that absolute positions of
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Figure 1. Mapping by Dimensionality Reduction of Obser-
vation History Data

some (three at least ) objects are known in advance.
We call these objects anchor objects. Next we assume
that an observation vector yt is composed of elements
each of which corresponds to an object as follows,

yt = [y(1)
t , y

(2)
t , · · · , y(M)

t ]T (3)

The last and most important assumption is that the
measurement model g(xt,m) can be approximately de-
composed into submodels relating to individual ob-
jects as follows,

g(xt,m) ≈ [gm,xt(ξ1), · · · , gm,xt(ξM )] (4)

This implies that an observation relating to the j-th
object y

(j)
t is approximately dependent only on the ob-

ject’s location ξj given the map m and current robot’s
position xt. In other words, it is assumed that y

(j)
t

is a measurement of some spatial relationship (such as
distance, direction, etc.) between the robot and j-th
object. Thanks to the last two assumptions, a feature
vector for each object y

(j)
1:N can be computed from the

robot’s historical observation data.

Under these assumptions, we can imagine there is a
(non-linear) mapping between y

(j)
1:N ∈ AN and ξj ∈

R2, where A stands for the space of y
(j)
t .

y
(j)
1:N =


y

(j)
1
...

y
(j)
N

 =

 gm,x1(ξj)
...

gm,xN
(ξj)


≡ Ψm,x1:N (ξj) (5)

Now consider that neither function g nor mapping
Ψm,x1:N is provided explicitly, but still we want to

obtain a map m or a low-dimensional representation
of objects ξ1, · · · , ξM from the historical observation
data y

(1)
1:N , · · · , y(M)

1:N . From this viewpoint, map build-
ing can be regarded as a process of extracting a low-
dimensional representation for M objects from M N -
dimensional historical observation vectors. This is ex-
actly an issue of dimensionality reduction described
earlier. Figure 1 illustrates the concept of mapping by
dimensionality reduction.

In summary, the framework of map building procedure
based on this idea is described as follows,

1. The robot explores the environment and collects a
set of observation history data Y1:N up to time N .

2. The observation data Y1:N is decomposed into M

column vectors {y(1)
1:N , · · · , y(M)

1:N } which correspond
to the observation histories about M objects.

3. Apply your favorite DR technique to the set
of vectors {y(1)

1:N , · · · , y(M)
1:N } or normalized one

{ỹ(j)
1:N}j=1,···,M if necessary, and obtain a set of 2-

dimensional vectors {zj}j=1,···,M .
4. Find an Affine transformation that minimizes the

mean distance error of anchor objects, then apply
it to {zj}j=1,···,M and obtain a set of estimated
object positions {ξ̂j}j=1,···,M .

This formulation of map building based on dimension-
ality reduction has several remarkable features that
SLAM does not have. First, the history of robot’s
pose x1:N does not appear in the estimation process
explicitly. In other words, a map (a set of object loca-
tions) is directly estimated from the observation his-
tory without self-localization. This is why we call it
“localization-free” mapping. In a sense, the robot’s
pose xt at each time is treated implicitly as a “dimen-
sion” of the robot’s observation history space. An-
other point is that LFMDR requires much less prior
knowledge on measurement and motion models. More
specifically, LFMDR only requests that the observa-
tion yt and measurement model g(m,xt) meet the as-
sumptions above. It is unnecessary to know what g is
exactly.

On the other hand, a major drawback of LFMDR com-
pared with SLAM is that it is basically an off-line al-
gorithm, which means the map is reconstructed every
time a new observation is obtained. This property
will be disadvantageous if there is a need to consider
moving objects. Another potential drawback is that it
generally requires a larger amount of observation data
than SLAM at the expense of abandoning high quality
information sources such as motion and measurement
models. Moreover, LFMDR in its original form does
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assume that the observation data Y1:N has no missing
elements. If it needs to deal with incomplete observa-
tion data (as is often the case in the real world), it has
to perform the dimensionality reduction along with es-
timating the missing values by some method such as
EM algorithm.

4. Visibility-only and Bearing-only
Mappings

In this section, we present two instances of
LFMDR - Visibility-Only Localization-Free Mapping
(VOLFM) and Bearing-Only Localization-Free Map-
ping (BOLFM). They are derived by applying the
LFMDR framework to visibility information and bear-
ing measurements of objects, respectively. Both of
them are tested in a simulated environment.

4.1. Common Settings

The simulated environment is a square region whose
side length is 2.5[m] containing M = 50 randomly
placed objects. Each object is cylinder-shaped with
diameter of 48[mm]. Four of them are anchor objects
whose absolute positions are given in advance.

At each observation position, the robot chooses its
next moving direction randomly within the range of
±π

4 and proceeds 200[mm] in that direction. It avoids
collisions with objects and walls by changing its direc-
tion reactively when it approaches them. Every 200 (in
BOLFM) or 500 (in VOLFM) observations, LFMDR
is applied to the historical observation data, and maps
are built. We conducted 25 runs by randomly changing
the initial poses 5 times for 5 different layout patterns.
Each setting (decided by DR method and its parame-
ter value) was evaluated by averaging the results of all
runs. To evaluate the accuracy of built maps, we em-
ployed both quantitative and qualitative criteria – (a)
Mean Position Error (MPE) and (b) Mean Orienta-
tion Error (MOE) which is defined by the percentage
of triangles (formed by arbitrary three objects) whose
orientations (i.e., clockwise or anti-clockwise) are in-
consistent with the ground truth maps.

4.2. Compared DR Techniques

This time we used the following 8 DR techniques.

1. Linear PCA (LPCA)
2. SMACOF (de Leeuw, 1977) : SMACOF is a met-

ric MDS technique that locally minimizes a loss
function called raw stress defined as:

ESMACOF =
∑
i<j

wi,j(δi,j − ‖zi − zj‖)2 (6)

Figure 2. Visibility-Only Measurements

Figure 3. Bearing-Only Measurements

where δi,j and wi,j stand for the dissimilarity (Eu-
clidean distance in our case) between i-th and j-th
objects and corresponding weight, respectively. In
this study, we consider two cases - (a) equal weights
and (b) kNN-based weighting To avoid local min-
ima, we used the solutions obtained by LPCA as
initial solutions for SMACOF.

3. Kernel PCA (KPCA)(Scholkopf et al., 1998)
: We tested (a) Gaussian (RBF) k(a, b) =
exp(−‖a−b‖2/(2σ2)) and (b) polynomial k(a, b) =
(< a, b > +1)d kernels. σ2 and d are parameters.

4. ISOMAP(Tenenbaum et al., 2000)
5. Locally Linear Embedding (LLE)(Roweis &

Saul, 2000)
6. Laplacian Eigenmap (LEM)(Belkin & Niyogi,

2002)
7. Hessian LLE (HLLE)(Donoho & Grimes, 2003)
8. Semi-definite Embedding (SDE)(Weinberger

et al., 2005)
ISOMAP, LLE, LEM, HLLE and SDE are graph-
based manifold learning techniques. This time, we
used k-nearest neighbors graphs, where k is the
only parameter. In LEM, we assigned a weight
wi,j = 1 if i and j are connected on the graph,
otherwise wi,j = 0.
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We used Matlab codes available publicly for ISOMAP,
LLE, HLLE and SDE, and ones written by ourselves
for the other methods (i.e., LPCA, SMACOF, KPCA
and LEM).

4.3. Case 1 : Visibility-only Mapping

4.3.1. Problem Settings

A previous study on Visibility-Only Mapping (VOM)
can be found in Yairi and Hori (2003). In VOM,
a robot with a panoramic camera attempts to build
a map using only visibility information, i.e., whether
each objects is visible or not. In this simulation, it was
assumed that the robot is able to recognize an object
if its horizontal visual angle is larger than 5 degrees
(0.0873 radian). In other words, each object is judged
to be visible if it is within the distance of about 550
mm as long as it is not occluded.

In VOM, observation history data Y1:N up to time
N is represented as a M -by-N binary matrix each of

Table 1. Final Map Errors in Visibility-Only Mapping

DR methods Opt. param. MPE [m] MOE[%]
(2000 stp) (2000 stp)

LPCA(CMDS) - 1.055 18.19
SMA(UNWGT) - 0.421 5.86
SMA(WGT) K = 5 0.206 4.83
KPCA(GAUS) σ2 = 0.5 0.926 23.29
KPCA(POLY) d = 8 0.953 27.03
ISOMAP K = 6 0.177 4.11
LLE K = 8 0.241 5.40
LEM K = 6 0.352 8.17
HLLE K = 8 0.192 4.24
SDE K = 7 0.138 3.65

whose elements is 0 or 1 (See also Figure 2). Therefore,
applying LFMDR to the visibility-only mapping leads
to a problem of embedding M N -dimensional binary
vectors {y(1)

1:N , · · · , y(M)
1:N } into a 2-D plane. In this case,

however, we used the normalized observation history
vectors instead of the original ones as,

ỹ
(j)
1:N ≡ y

(j)
1:N/‖y(j)

1:N‖ (7)

This normalization compensates the difference in how
easily each object is recognized by the robot.

4.3.2. Results

Figure 4 and Figure 5 show how the map errors
(MPEs) change according to the number of observa-
tions when each DR method is used. From these fig-
ures we can see the map accuracies are gradually im-
proved as the number of observations increases. In
other words, increasing the number of dimensions of
observation history vectors leads to a better recovery
of 2-D coordinates of the objects.

Table 1 summarizes the map errors (MPE and MOE)
after 2000 observations (i.e., N = 2000) for the DR
methods with their optimum parameter values. We
notice that non-linear DR methods except KPCA out-
perform Linear PCA. This result is quite reasonable,
because the assumption in the Visibility-Only Map-
ping that only nearby objects are visible is more fa-
vorable for the graph-based DR methods which focus
on the local proximity of objects than LPCA which
attempts to preserve the global covariance.

Figure 6 and Figure 7 show examples of maps obtained
by applying LPCA and SDE to a set of observation
data. In these figures, differences between true and
estimated object positions are emphasized with lines.
On the other hand, KPCAs with Gaussian and polyno-
mial kernels are far behind the graph-based non-linear
DR methods. This implies that not only nonlinearity
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Figure 6. A Map Built by LPCA in Visibility-Only Map-
ping After 2000 steps (MPE:1.023m, MOE:15.95%)
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Figure 7. A Map Built by SDE in Visibility-only Mapping
After 2000 steps (MPE:0.101m, MOE:2.77%)

but also locality should be taken into account in this
problem.

Another noteworthy point is that SMACOF which is a
relatively old technique performs as well as the latest
spectral manifold learning methods, especially when
the weights are assigned by k-nearest neighbors.

In terms of final map errors, SDE outperforms others,
though it takes more computational time than others.

4.4. Case 2 : Bearing-only Mapping

4.4.1. Problem Settings

In recent years, there is an increasing interest in
Bearing-Only SLAM (BOSLAM)(Deans & Hebert,
2000) that attempts to solve the SLAM problem us-
ing only a single inexpensive camera. In this section,
we consider Bearing-Only Localization-Free Mapping
(BOLFM) by applying the framework of LFMDR to
the bearing measurements.
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Figure 8. Transition of Mean Position Errors in Bearing-
only Mapping (LPCA, SMACOF, ISOMAP, LLE, LEM,
SDE)

In this experiment setting, the robot is able to measure
the relative bearing angle to each object at each loca-
tion on the path (See Figure 3). For example, let the
relative bearing angle to j-the object at time t be θt,j .
We simply assume that the bearing measurements to
all objects are always available, although it is unlikely
in the real world due to various factors such as oc-
clusion. If we had to take missing measurements into
account, we could estimate them using EM algorithm.
As in the previous subsection, we also assume that all
objects are uniquely identifiable.

An issue when applying the LFMDR framework to the
bearing measurements is the discontinuity between −π
and π. To avoid this problem, we used a unit direc-
tional vector [cos θt,j , sin θt,j ]T as an observation y

(j)
t

instead of the bearing angle θt,j itself. This makes
the observation history vector seemingly 2×N dimen-
sional.

4.4.2. Results

Figure 8 shows how MPE changes as the observation
data increases in each DR method, and Table 2 lists
MPEs and MOEs after 2000 observations for the DR
methods. We omit the result of HLLE because it often
failed to run in this experiment.

Compared with the results of VOM, maps are es-
timated with higher accuracy as a whole. This
means that bearing measurements are more informa-
tive about spatial relationships between the robot and
objects than visibility measurements.

A significant difference from VOLFM is that LPCA
performs much better in BOLFM. In fact, surprisingly,
the performance of LPCA was better than those of
LLE and LEM in this case. We consider the reason for
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Table 2. Final Map Errors in Bearing-Only Mapping

DR methods Opt. param. MPE [m] MOE[%]
(2000 stp) (2000 stp)

LPCA(CMDS) - 0.168 2.33
SMA(UNWGT) - 0.101 1.38
SMA(WGT) K = 8 0.0609 1.00
KPCA(GAUS) σ2 = 1.0 3.47 49.2
KPCA(POLY) d = 2 0.605 9.15
ISOMAP K = 9 0.0979 1.83
LLE K = 8 0.173 3.03
LEM K = 7 0.367 8.46
SDE K = 7 0.0741 1.36

this phenomenon is in the assumption that all objects
are observable from every robot position, which de-
creases the locality of the observation history space. If
we employed a different setting that distant objects are
NOT observable, different results would be obtained.

5. Discussion

5.1. Robustness against Uncertainties

Although the proposed framework in the simplest form
is vulnerable to the observation uncertainties such
as measurement noise, indistinguishability of objects,
and missing observations which are inevitable in the
real world, a variety of enhancements to overcome the
limitations can be considered. When some objects are
not distinguishable accidentally, a simple data associa-
tion can be performed by minimizing the loss function
underlying a specific DR method with respect to not
only the map of objects but also the correspondence
between the measurements and the objects. When a
relatively small portion of the observation data is miss-
ing due to occlusion and other non-structural noise,
PCAMD (PCA with missing data) and PPCA using
EM algorithm can be used. If the missing values oc-
cur in a structural way rather than randomly and their
percentage is high, a promising approach will be to di-
vide the whole set of objects and their observation data
into overlapping subgroups, then build corresponding
sub-maps and integrate them.

5.2. Scalability

Most of the DR techniques used in this work are
not scalable to the data size (i.e., the number of ob-
jects in our case) in their original forms. However,
several approximation methods such as Landmark-
ISOMAP(de Silva & Tenenbaum, 2003) and Fast
MVU(Weinberger et al., 2007) that make those DR
techniques applicable to large-scale problems have
been developed recently. Therefore, the easiest way to
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Figure 9. A Map Built by SMACOF (Weighted, K=8) in
Bearing-Only Mapping After 2000 steps (MPE:0.0512m,
MOE:1.10%)

make the proposed framework scalable to the number
of objects is to employ these approximation versions
of DR methods. Another (but similar) approach is the
divide-and-conquer approach (i.e., sub-map approach)
mentioned above.

6. Conclusion

In this paper, we reconsidered the robotic map build-
ing from the viewpoint of dimensionality reduction
(DR) of observation history data, and proposed a
new framework called Localization-Free Mapping by
Dimensionality Reduction (LFMDR). Unlike SLAM,
LFMDR performs map building without localization,
and does not require explicit models of state transi-
tion and observation. We also presented Visibility-
Only Localization-Free Mapping and Bearing-Only
Localization-Free Mapping , which are derived by ap-
plying this framework to visibility and bearing mea-
surements, respectively. In the experiment, we tested
them with several DR methods including linear and
nonlinear ones. A variety of applications of LFMDR
to other kinds of measurements such as Range-Only
Mapping can be considered in a straightforward way.

There are, however, many issues to be solved such as
how to deal with missing measurements, how to de-
velop an online algorithm, and so on. Another in-
teresting issue is how to integrate different informa-
tion sources in this framework. For example, consider
the situation that both visibility and bearing measure-
ments are available. In that case, the problem of map
building is to find a common low-dimensional repre-
sentation for the two homeomorphic manifolds in their
observation history spaces.
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