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Abstract

We consider a setting for discriminative semi-
supervised learning where unlabeled data are
used with a generative model to learn effec-
tive feature representations for discriminative
training. Within this framework, we revisit
the two-view feature generation model of co-
training and prove that the optimum predic-
tor can be expressed as a linear combination
of a few features constructed from unlabeled
data. From this analysis, we derive methods
that employ two views but are very differ-
ent from co-training. Experiments show that
our approach is more robust than co-training
and EM, under various data generation con-
ditions.

1. Introduction

In many real-world problems, an enormous amount of
unlabeled data is available with little effort, while la-
beled data is costly to obtain. It is thus natural to ask
whether, in addition to manually labeled data, one can
also take advantage of the unlabeled data. Methods
that use both labeled and unlabeled data are gener-
ally referred to as semi-supervised learning.

We divide earlier efforts into two categories. In the
first category, labels for unlabeled data are estimated
based on the current classifier maintained by the al-
gorithm. The augmented “labeled” data is then used
to retrain the current classifier. Examples of this ap-
proach include the transductive SVM (Vapnik, 1998),
the co-training method (Blum & Mitchell, 1998), and
EM (Nigam et al., 2000, for example). In the sec-
ond category, the unlabeled data is used to create a
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good hypothesis space so that a supervised learning
algorithm can be applied with the constructed hy-
pothesis space. This approach includes some of the
more recent developments such as graph based semi-
supervised learning (Zhu et al., 2003, for example)
as well as more direct construction of the hypothesis
space (Ando & Zhang, 2005, for example).

This paper focuses on the second approach, in which
we use unlabeled data to learn good feature represen-
tation for discriminative learning. Within this frame-
work, we consider a simple but non-trivial data gen-
eration model used earlier for analyzing co-training,
where two views of the data are independently gener-
ated conditioned on the label.

Our contribution is to show that under this two-view
model (but with fewer assumptions than co-training!),
it is possible to learn a small number of features from
unlabeled data so that the optimum predictor can
be expressed as a linear combination of these fea-
tures, even though the original feature space may be
high-dimensional. Due to the reduced dimensionality
that preserves optimality, the analysis proves the use-
fulness of unlabeled data for discriminative learning.
The result leads to semi-supervised learning methods
that employ two views but are very different from co-
training. Moreover, it explains the effectiveness of the
semi-supervised learning method proposed in (Ando &
Zhang, 2005). Experiments show that our approach is
more effective than conventional methods under vari-
ous conditions.

2. Discriminative Semi-supervised
Learning and Generative Model

In machine learning, our goal is to predict output
y € Y given input x € X, where we assume that
K = |Y| is finite. Assume that (z,y) is drawn from an

IThat is, we do not assume that each view is sufficient
for prediction.
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unknown underlying distribution D. In the probabil-
ity modeling framework, this can be achieved through
an estimate of the conditional density P(y|z). Let
P(z,y|a) be a family of joint probability distributions
on X x )Y with unknown parameter a, and assume
that it contains D. The supervised learning problem
is to estimate the unknown parameter o from labeled
examples {(X;,Y;) : ¢ = 1,...,n} that are indepen-
dently drawn from D. In semi-supervised learning,
we also observe unlabeled data X; (j =n+1,...,m)
that are drawn from D but without the corresponding
outputs Yj.

In this framework, one may decompose P(z,y|a) as
P(z,y|a) = P(y|la, z) P(x|a). We shall call the compo-
nent P(x|a) the generative component, and the compo-
nent P(y|a, ) the discriminative component. In many
applications, discriminative learning with a model of
the form P(y|a,x) is more effective than generative
models. This is because x is often high dimensional,
so that it is difficult to model P(z|a) well. However,
the generative component is useful for learning from
unlabeled data. As argued in (Zhang & Oles, 2000),
in order for unlabeled data to be useful, it is necessary
to incorporate a generative component that depends
non-trivially on «.

Following a similar argument, we illustrate this point
more generally under the Bayesian decision theoreti-
cal framework, where we are given a prior distribution
P(«). Under such a prior, the optimal Bayes estimator
depends only on the posterior distribution:

Ppost(a) =P(a{(X;,Y;):i=1,...,n},
{(Xj):j=n+1,....,m}),

and the Bayes optimal conditional probability is
P(ylz) = [, P(y|o, x) dPpost (). If we redefine a prior
on « using unlabeled data as:

m

Punlabeled(a) X H P(lea)P(Oé),

Jj=1
then mathematically, we can rewrite the posterior as

n

Ppost(a) X Punlabeled(a) H P(Y;|O‘7 XZ) (1)
=1

This means that the effect of unlabeled data can be
viewed as re-defining a “prior” over « using unlabeled
data. With such a redefined prior, we may then apply
a discriminative model P(Y;|a, X;).

The above derivation is general under the Bayesian
framework. Although simple, it shows that from the
Bayesian point of view, unlabeled data can only be

useful through a redefinition of “prior” (using unla-
beled data), combined with a discriminative learning
procedure. For example, a practical approach to ap-
proximate the posterior of « is to use the d-function
at the MAP (maximum a posterior) estimator:

& = argmin | — Zln P(Yi|a, X;) — In Pupiabeted () |
i=1

and the conditional probability at a data point z is
estimated as P(y|&,x). Other Bayesian inference pro-
cedures can be used as well.

More generally, we may consider a similar framework
for discriminative learning in a non-Bayesian setting.
Since in a discriminative model, we are interested in
finding a function f,(z) that directly predicts y given
x, a prior in the Bayesian setting can be regarded as a
restriction on the functional form of the prediction rule
fa(), or regularization condition in the non-Bayesian
setting. In this setting, we may drop the parameter «,
and consider estimating f = f, directly in the follow-
ing regularization method. It is a direct generalization
of using MAP to estimate (1):

f = argmjin Z (b(f(Xz), }/1) + /\Qunlabeled(f) )
=1
(2)

where A > 0 is an appropriately chosen regulariza-
tion parameter, and ¢(f,y) is a loss function which
we would like to minimize by fitting f on the training
data. The regularization condition Quniapbered(f) puts
restrictions on forms of f in the functional space, and
this is the only part in the formulation that depends
on unlabeled data.

The regularization formulation (without including un-
labeled data) has become standard in modern sta-
tistical machine learning. In essence, it replaces the
negative log-likelihood loss in the MAP formulation
by an arbitrary loss function, and replaces the neg-
ative log-prior in MAP by an arbitrary regulariza-
tion condition which restricts the parametric form
of f for the prediction function. Parallel to the
Bayesian framework, equation (2) implies that the
unlabeled data should be used to construct a reg-
ularization condition Quniaberea(f) for discriminative
training. An equivalent view is to construct a hy-
pothesis space Huyniabeied 0f f using unlabeled data
and solve the empirical risk minimization problem:

f = arg min.feHunlabeled [% Z?:l ¢(f(Xl)7 Y;)]

In summary, in order to use unlabeled data in dis-
criminative learning, we can first learn a good regular-
ization condition, or discriminative parameterization
form (i.e., hypothesis space) using unlabeled data, and
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then use the parameterization with a standard dis-
criminative learning method such as MAP, SVM, or
boosting etc. The rest of the paper focuses on specific
statistical models for which we show how this perspec-
tive can be implemented.

3. Two-view Feature Generation Model

Given input space X, we consider two maps (views)
z1: X — 21 and 29 : X — Z5. For simplicity, we
also write z1(z) as z; and z9(z) as z3. Given (z,y),
we assume that the two views z1(z) and 29(z) are in-
dependent, conditioned on the label y:

P(z1, 22ly) = P(21]y) P(22ly). 3)
Although it is possible to relax our assumption to weak
dependency, we will not analyze it here due to the
space limitation. Instead, we will use experiments to
show that the performance of the methods developed
in this section degrades smoothly when the indepen-
dence condition becomes violated. This conditional in-
dependence assumption is also used in the analysis of
co-training in (Blum & Mitchell, 1998; Dasgupta et al.,
2001). However, for co-training to be successful, one
requires an additional assumption that the label y can
be predicted well by z; alone and by 22 alone (view
redundancy), which our approach does not assume.
Also note that (3) is a weaker assumption than the
naive Bayes assumption, which assumes components
in x are all independently generated given labels. Such
less restrictive assumptions have a practical advantage
as shown later in our experiments.

Our goal is to use the generative model based on (3)
to obtain (from unlabeled data) features useful for dis-
criminative learning, which implements the idea out-
lined in Section 2.

3.1. Conditional Formulation

The main trick in our solution is to work with P(z1|z2)
to obtain conditional estimates of P(y|z1) and P(y|z2).
As we show later, these estimates can be effectively
computed without forming an exhaustive table of
P(z1]22) explicitly. The following lemma shows that
P(y|z1) and P(y|z2) (and P(y)) contain all the neces-
sary information for classification.

Lemma 1 Under the assumption of (3), we have

P(y|z1)P(ylz2)/P(y), (4)

P(y|z1,22) = c(21,22) "

where c(z1, 22)

= >, Pylz1)P(yl22)/P(y).

Proof Note that

P(ylz1,22)P(21, 22) = P(y) P(z1]y) P(22]y) = P(21,9)
P(z2,y)/P(y) = P(21)P(22) P(y|z1) P(ylz2)/ P(y)-
Since >, P(y[21,22) = 1, we have c(z1,22)

>, Pl P(ylz)/ Py). -
)

The lemma implies that quantities P(y|z1), P(y|z2),
and P(y) form sufficient statistics for P(y|z1, z2).

We can obtain a low-rank decomposition of the condi-
tional probability P(z;|z2) from (3):

Z P(z1]y)P(y|z2).

yey

Zl|22

Our goal is to learn P(y|zz) from this decomposi-
tion. Instead of estimating conditional probabilities
P(z1]22) on the left-hand side (because it may not
be practical to enumerate all possible (z1,22)), we
form easier binary-classification problems. Let t5 be
an arbitrary binary-valued function Z; — {0,1} for
¢=1,...,m, and for simplicity, denote by t5 = t5(z;).
Then we have:

ZPtﬂy

yeY

£=1,....,m. (5

t2|22 y|22)7

We consider m binary classification problems of pre-
dicting t5(z1) (for £ =1,...,m) from 23, which we re-
fer to as auziliary problems. By simultaneously solving
multiple auxiliary problems, we can obtain a paramet-
ric representation of P(y|z2). Similarly, we can obtain
a parametric representation of P(y|z1). With such rep-
resentations, we can directly obtain a parametric rep-

resentation of P(y|z1,z2) from (4), which can then be
used directly with a discriminative learning algorithm.

In order to obtain the functional form of P(y|z1) and
P(y|z2) introduced above, we consider an embedding
of z; into a high dimensional Hilbert space H; by a
feature map v; : Z; — H; (j = 1,2). For notational
simplicity?, we use bold symbol z; to represent the vec-
tor representation ;(z;) of z;. One may also simply
assume that 1); is the identity operator and Z; = H;.

3.2. Linear Subspace Model

If Ho is a sufficiently large Hilbert space, then any
real-valued function of zo can be represented in a form
B{ 7o to arbitrary precision. In particular, Ve > 0,
there exists (o(y) € Ha such that

|P(y|z2) — Ba(y) 22| <€ for all z. (6)

*Without loss of generality, we may also assume for
simplicity that P(w’z; = 0) = 1 implies w = 0 be-

cause otherwise, we can simply consider the quotient space
H;/{w € H; : w'z; = 0}.
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The following theorem essentially shows that the opti-
mum predictor can be expressed as a linear combina-
tion of at most K features and suggests how to con-
struct this feature space from unlabeled data.

Theorem 1 Consider the solutions (in the least
squares loss sense) of m problems indexed by ¢ in (5):
Wy = arg miny, E(z27té)(WTZ2—tg)2. Assume (6) with

€ =0, and let By = span({Fa2(y) : y € V}), where

gg(y) satisfies P(y|ze) = Pa2(y) 2o for any z2. Then
Wy € Ba, thus the rank of span({w,}) is at most K.

In the non-degenerate situation where the rank is K,
let {vi} (k =1,...,K) be a set of basis vectors of
span({wy}). Then there exist vi(y) (fork=1,...,K)

such that P(y|z2) = Eszl Ye(Y)VEzy for anyy and 2.

Proof We have P(y|z2) = “Q(y)TZQ. Let P(th =
lly) = ag(y), we obtain from (5): P(tg = 1]z,) =
>y @ (y)P2(y) 22, That is,

3 ab)Aa(y) = argmin B, ) (w22 — t5)2
yey

Therefore we have wy =3 5, ab (y)Ba2(y) € B,. This
proves the first part of the theorem. For the second
part, since By has rank at most K, if the set of wy
has rank K, then By = span({wy : £ =1,...,m}) =
span({vy : k = 1,...,K}). It follows that (a(y)
can be represented as ), vi(y)vi. This implies that

K
P(ylz2) = > 5y e (y) Vi 22 u

The theorem essentially says that the K feature func-
tions vizy (k= 1,..., K) give sufficient statistics for
P(y|z2). Therefore basis vectors of span({w¢}), ob-
tained by SVD of the matrix of vectors wy, can be
used to produce good K-dimensional feature vectors
containing all the information needed for classification.

Above, we only proved the theorem under exact as-
sumptions (conditional independence and e¢ = 0).
Though the page limilation precludes detail, it can be
shown, using perturbation analysis, that when the as-
sumptions are moderately violated, we can still obtain
useful basis vectors (which approximately span Bs) us-
ing SVD and keeping the most significant dimensions.

This SVD-based feature generation method suggested
by our analysis is, in fact, essentially the same as the
scheme proposed in (Ando & Zhang, 2005). Thus,
Theorem 1 explains why (Ando & Zhang, 2005)’s
semi-supervised learning method is effective ((Ando
& Zhang, 2005) did not analyze why using unlabeled
data in the way proposed there can be helpful). Theo-
rem 1 proves the effectiveness of semi-supervised learn-

ing under the statistical model of (3), and provides a
concrete example for the idea outlined in Section 2.

Exchanging the roles of the two views and using wj =
arg miny, E(Zl)t/{)(szl — t{)2, we can compute the
basis functions uy (k =1,..., K) that spans wj. Un-
der assumptions analogous to Theorem 1, we obtain
P(ylz1) = Zszl vi(y)ulz;. Now, from Lemma 1,
P(y|z1) and P(y|z2) give sufficient statistics for the
classification problem. Therefore P(y|z1,22) can be
expressed using features ugzl and vng. One may
directly use a linear combination of feature vectors
[u}z,] and [v}z], which gives a feature vector of size
2K. If y can be predicted well from either P(y|z1)
alone or P(y|z2) alone, then it can be predicted well
from a linear classifier based on these 2K features.
In the case that a nonlinear combination of P(y|z1)
and P(y|zz) is more effective, we obtain from (4)

that P(y|z1,22) = Zﬁfk/zl Brx (y)ufz1vi zo, where
Bra () = 1 ()7 () / P(y)-

The parameters (i ;- can be obtained by discrimi-
native learning on labeled data such as least squares
regression: ,
argming 3, Y, ey (F0)72(X0) — 10/ = Y0))
where z(z) = [ulzivizolkk=1,..m € RE.
The formulation has K3 parameters B (y) for
k,k' =1,...,K and y € Y. The disadvantage of this
method, which uses products vgzlvg,zQ instead of
vgzl and vg,zz separately, is that the dimensionality
becomes K? instead of 2K 2. Because of the increased
dimensionality, it may not perform as well as using
vgzl and vg, zo as separate features in a linear clas-
sifier, when each view is sufficient by itself. However,
it still has theoretical significance because it provides
a K3 parameter representation of the target function
that is impossible to obtain without unlabeled data.

3.3. Log-linear Mixture Model

In place of (6) where the conditional probability is ap-
proximated as a linear combination of features, we may
assume that the conditional class probability is a log-
linear combination of features:

P(y|z2) o eXP(ﬁz(Q)TZﬂ- (7)
This leads to a more probabilistic procedure to max-
imize the likelihood of the model. Let P(t§ = 1]y) =
ok (y), we can obtain from (5) the following equation
S ey a5 (1) exp(Ba(y) T z2)
> yey exp(B2(y) " z2)

for each of the m problems. Instead of treating each
binary auxiliary problem separately, we may also con-

Pt = 1]z) =
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sider an m-valued function ty : 2, — {1,...,m}
(instead of m binary-value functions t5) and let
P(ta(z1) = ¢|y) = ab(y). Then
S ey a5 (y) exp(Fa(y) z2)

2 yey exp(Ba(y)Tz2)

For this model, we can use unlabeled data to solve

ey 0 (y)er )=
max B | I = ’
2 yey )

P(ta(21) = {]22) =

(8)

subject to the condition Y ;" &(y) = 1 for each y €
Y. This optimization can be solved by EM.

Once we obtain the K vectors
vie = wlye) (k= 1,...,
degenerate case, v = gg(y) up to a permutation (note
that we are unable to find the correspondence of k to y
just from (8)). A theorem similar to Theorem 1 can be
obtained, which we shall skip due to the space limita-
tion. Similarly, by assuming P(y|z1) o exp(3;(y)Tz1),
we can obtain the solution gl(y) for y € Y and let uy
(k=1,...,K) correspond to a permutation of Fy(y)
(y € V). We can then obtain the following parametric
form:

P(y|z1,22) o P(l/lZl)P(yIZz)/P(y)
)+ Z (Ve (y

which contains 2K? + K parameters.

w(y) for y € Y and let
K), we know that in the non-

x exp Juiz1 + v (y)viz2) |

In this model, after learning {ux} and {vy}, we have
a simple linear discriminative parameterization of the
problem with 2K?2 4 K features. By Lemma 1, we can
use maximum entropy to solve v using labeled data:

P(y|z1, 22) o< exp(y(y) " a(x));

ar, Inax eXp Y) Z(XZ)>
T Xﬁ 3, ey exp(1 () 2(X)

T T
UgZz,,vVyZg,...

Z(I) :[laulzla-'-v 7V£Z2]'

Compared to the linear subspace model, the advan-
tage of this method is that only 2K? + K parame-
ters (instead of K?3) are required to express the target
P(y|z1, 22) linearly. The potential disadvantage is that
the EM for solving (8) may get stuck in a local mini-
mum.

4. Experiments

We test the semi-supervised learning methods derived
from the two models discussed above in comparison
with alternatives: co-training and EM.

4.1. Methods

Linear subspace model (LS) The implementation
of the linear subspace model-based method (hereafter,
LS) follows Section 3.2. Suppose that we are given
two views Z; and m binary-valued functions ¢} for
1 € {1,2}, a labeled data set L, and a unlabeled
data set U. First, obtain m weight vectors by solv-
ing wy = arg miny, Z(Z17Z2)€U(WTZQ —t5(21))? for £ =
1,...,m. Second, let W be a matrix whose columns
are the m weight vectors, and compute v3,---,vh to
be W’s most significant left singular vectors, where p
is a dimensionality parameter. Third, exchange the
roles of two views and compute vi,... ,vi. Fourth,
given (z1,22), generate a 2p-dimensional feature vec-
tor whose components are va7 for + = 1,2 and
7 =1,...,p. Our new feature vector is a concate-
nation of z1,z5, and the 2p-dimensional vector com-
puted. Train the final classifier with labeled data L
using the new feature vector representation.

As we have discussed, instead of the 2p-dimensional
vector, one may produce a p?-dimensional vector con-
taining (z7 vi)(zlv}) fori=1,...,pandj=1,...,p,
which represents the interaction of two views. In ide-
alized cases, the dimensionality p should be set to the
number of classes K. In practice, p should be deter-
mined by cross validation on labeled data as the num-
ber of inherent sub-classes underlying the data may
not be K.

Log-linear mixture model (LLM) Our experi-
ments use the m-valued function-based formulation
and optimize (8). This optimization is done by the
standard EM procedure, where we introduce a hid-
den indicator variable &, ., (y) that is one if the data
point (21, 22) has label y; zero otherwise. In the E-
step, we compute the expectation of this variable for
each data point and for each y € Y given as and w.
In the M-step, we update w by solving standard maxi-
mum entropy and update «s, given probabilistic (soft)
labels weighted proportionally to the expectation of
€21 ,20(y). We initialize the EM procedure by setting
ab(y) = 1/m (uniform) and initializing weight vectors
w(y) using labeled data.

Auxiliary problems (function ¢3) In our experi-
ments, we define function t3(z1) to indicate which en-
try of z; (vector representation of z1) has the largest
value while breaking ties by preferring a smaller vector
entry index.

Co-training (baseline) Our implementation fol-
lows the original work (Blum & Mitchell, 1998). The
two classifiers (employing distinct feature maps) are
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trained with labeled data. We maintain a pool of ¢
unlabeled instances by random selection. The classi-
fier proposes labels for the instances in this pool. We
choose s instances for each classifier with high confi-
dence while preserving the class distribution observed
in the initial labeled data, and add them to the la-
beled data. The process is then repeated, and the
final classifier is trained using both views. We use a
discriminative linear classifier, which is also used for
LS and the supervised baseline.

Naive Bayes EM (baseline) Our implementa-
tion of the naive Bayes-based EM essentially follows
(Nigam et al., 2000). At a high level, this EM process
can be summarized as follows. The model parameters
(estimates of P(y) and P(f|y) where f is a feature
component) are initialized by the labeled data, and
probabilistic labels (soft labels) are assigned to the un-
labeled data points according to the model parameters.
Using the assigned soft labels, the model parameters
are updated based on the naive Bayes assumption, and
the process repeats.

4.2. Synthesized Data Experiments

This section reports experiments using artificial data
sets generated by controlling properties of the two
views. This shows the behavior of different algorithms
when different data assumptions are violated.

4.2.1. DATA GENERATION

We generate data sets as follows. First we generate two
sets of tokens (Fy and Fj) of size s (vocabulary) cor-
responding to two views, respectively. For each class
y € {1,...,K}, two token arrays T4 ,[0..t — 1] and
Ty [0..t — 1] of size ¢ (class vocabulary) are generated
by randomly drawing (without replacement) ¢ times
from F3 and Fy, respectively. To generate a data point,
we pick a class y randomly from {1,..., K}, and then
draw tokens ¢; times from 77, and draw tokens g
times from 75 ,. Feature vectors are generated based
on the ‘bag of words’.

We create data sets of various properties. To generate
a data set that satisfies the naive Bayes assumption, we
draw tokens from 71 , and 75 , randomly and indepen-
dently. To introduce dependency among the ¢; tokens
belonging to view-i, we generate a number p; € [0,¢—1]
randomly and then choose ¢; consecutive tokens in the
array T;, (ie. T;y[pil, ... Tiyl(ps + ¢ — 1) mod t]).
In order to additionally introduce dependency between
the two views, we set p; = p2 with probability r, where
r is a parameter to control the degree of the depen-
dency between the two views.

We fix the number of classes K to 10 and generate
30K data points for each data set. Each data set is
randomly divided into three sets: the training set of
100 labeled consisting of data points, the test set of
1000 data points, and the remaining 29000 data points
as the unlabeled set. We fix the dimensionality p for LS
to 10, the number of classes, unless otherwise specified.
We report the average and standard deviation (error-
bar) of five runs generated with the same configuration
but different random seeds.

4.2.2. RESULTS

(8) Naive Bayes data sets (b) Non-naive Bayes data sets
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Figure 1. (a) On naive Bayes data sets. (b) On non-naive
Bayes data sets.
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Figure 2. x-axis: r — probability that features from two
views have dependency on each other.
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Figure 3. With non-redundant views: (a) Standard com-
parisons. (b) Dimensionality; interaction features.

Naive Bayes data: Figure 1 (a) shows classification
accuracy on the data sets that satisfy the naive Bayes
assumption on the feature components. These data
sets satisfy the model assumptions of all the tested
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semi-supervised methods. Consequently, they all per-
form extremely well, producing nearly 100% accuracy
while the supervised baseline (a discriminative linear
classifier) achieves only 23%.

Non-naive Bayes data: The naive Bayes assump-
tion is often unrealistic. The data sets used in Figure
1 (b) (and all others) were generated in a more real-
istic manner so that features belonging to the same
view are dependent on each other. In this experiment,
the two views are still kept conditionally independent
given classes. Our LS and LLM perform well. The
performance of naive Bayes EM degrades, reflecting
the violation of its model assumption.

Dependency between two views: Figure 2 inves-
tigates the effect of violating the conditional indepen-
dence assumption of the two views. The degree of vi-
olation is controlled by parameter r (probability that
an instance is generated so that the features from the
two views are dependent on each other; see Section
4.2.1). As the dependency between the two views
increase (i.e., as r increases), the performance of all
the semi-supervised methods degrade. However, even
when r = 0.3, LS and LLM still achieve > 90% ac-
curacy. When two views are completely dependent
(r = 1), all methods fail to benefit from unlabeled
data.

Non-redundant views: It is known that for co-
training to work well, each of the two views should
be sufficient for classification by itself, which is some-
times referred to as the view redundancy assumption.
The data sets used in Figure 3 violate this assump-
tion in that to discriminate the 10 classes, both views
have to be used. That is, view 1 discriminates 5 su-
per classes (class1&2, ..., 9&10), and view 2 discrimi-
nates 5 super classes of other combinations (class1&6,
..., 5&10). (Therefore, using one view alone would
achieve 50% accuracy at best.) Data generation was
done by letting the classes that compose one super
class share the same class vocabulary array (setting
Ty, =Ty, Ty, = Ty, and so forth). Note that
non-redundant views are common in NLP tasks such
as named entity chunking. As shown in Figure 3 (a),
co-training does not perform well. It underperforms
EM while it was outperforming EM when the redun-
dancy assumption was met (Figure 2). By contrast,
LS and LLM perform well as long as the dependency
between views is low. This is consistent with our the-
oretical analysis.

Experiments so far have fixed the dimensionality for
LS to 10 (the number of classes). However, since each
view was generated from 5 super classes on these data
sets, one would expect that dimensionality 5 would be

more suitable. Moreover, the interactions of two views
are expected to be useful on non-redundant views be-
cause in the LS model, the optimum predictor cannot
be expressed as a simple linear combination of fea-
tures from the two views separately. This is confirmed
in Figure 3 (b); observe that ‘5-dim LS w/view in-
teractions’ outperforms ‘5-dim LS’ in (b), which out-
performs ‘LS’ (10-dim) in (a). Furthermore, ‘5-class
LLM’ in (b) performs well, for which EM was initial-
ized using the data labeled with 5 super classes.

LS versus LLM: Throughout the synthesized data
experiments, we have observed that LLM generally
outperforms LS when the model assumptions are close
to being satisfied, for example, when the dependency
between two views is low (r < 0.3). LLM’s superiority
is most prominent on the non-redundant views (Fig-
ure 3). This is consistent with our analysis; that is,
the fact that LLM requires fewer parameters than LS
(2K? + K vs. K?) to express non-linear view inter-
actions is critical in this setting. However, when the
view dependency becomes higher, LLM’s performance
drops more rapidly than LS, showing more sensitiv-
ity to the violation of the model assumptions. This
is possibly because the optimization process is tightly
coupled with the probabilistic model assumptions, un-
like LS which employs SVD.

4.3. Experiments on Real-world Data
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Figure 4. Named entity chunking performance.

Due to the space limitation, we only include one real
example. Note that in (Ando & Zhang, 2005), the ef-
fectiveness of a method similar to LS has already been
shown on a number of tasks including text categoriza-
tion, part-of-speech tagging, and hand-written digit
image classification.

4.3.1. NAMED ENTITY CHUNKING

We use named entity chunking data set (English) pro-
vided for the CoNLL’03 shared-task®. The corpus is
annotated with four types of named entities: persons,
organizations, locations, and miscellaneous names. We
use the official training/development/test splits and 2

3http://cnts.uia.ac.be/conll2003/ner



Two-view Feature Generation Model for Semi-supervised Learning

million words of Reuters articles (unlabeled data). The
chunking problem is cast as sequential labeling by en-
coding chunk information into word tags. Our feature
representation and the decoding algorithm follow those
of (Ando & Zhang, 2005), and the detail isn’t impor-
tant for the purpose of the paper. We learn new fea-
tures from unlabeled data using four types of two-view
configurations derived from ‘current word’ vs. ‘previ-
ous word’ and ‘current word’ vs. ‘next word’. That is,
in the first type, the auxiliary problems are to predict
the current word based on the previous word; in the
second type, the auxiliary problems are to predict the
previous word based on the current word; and so forth.

Because the naive Bayes classifier produced signifi-
cantly lower performance than our supervised baseline
either in the supervised or semi-supervised setting, we
do not include the results.

4.3.2. RESULTS

We use 50 (and 100) documents as training data ran-
domly drawn from the official training set (consist-
ing of 945 documents) and evaluate performance in F-
measure of name chunk detection on the development
set and the test set. We conduct 5 runs and report the
average performance in Figure 4. Both LS and LLM
significantly improve performance over the supervised
baseline. Co-training does not perform well on this
task even though we give unfair advantage to it by
optimizing parameters including the number of itera-
tions. For co-training, the feature split ‘current+left-
context’ vs. ‘current+right-context’ was used, which
was better than ‘current’ vs. ‘left context’ (or ‘right
context’).

Natural feature splits on this task appear to provide
the views whose degree of conditional independence
is high enough for our LS and LLM to perform well.
However, each view is, apparently, not sufficient for
classification by itself*, and so co-training fails when
the split like ‘current’ vs. ‘left context’ is used. If we
use overlapping views such as ‘current+left-context’
vs. ‘current+right-context’, each view becomes more
informative, but also dependency between views in-
creases, which degrades performance. Thus, our ap-
proach has a clear advantage over co-training on this
type of task.

4For example, knowing the next word is “said” is not
sufficient for deciding whether the current word is a person
name or an organization name.

5. Conclusion

We presented a framework for semi-supervised learn-
ing, where a generative model is used to learn effective
parametric feature representations for discriminative
learning. Using the two-view model as in co-training
but without assuming view redundancy, we proved
(under the ideal model assumptions) that one can con-
struct a small set of features from unlabeled data so
that the optimum predictor can be represented as a
linear combination of these features. The result im-
mediately implies the effectiveness of this approach to
semi-supervised learning.

Our experiments demonstrated that when the condi-
tional independence assumption is violated, the perfor-
mance of our methods (derived from our analysis) de-
grades smoothly. Since the assumptions in our model
are less restrictive than those of co-training and naive
Bayes EM, our approach can perform well even when
co-training and naive Bayes fail. We validated the
claim empirically by investigating effect of the viola-
tion of different data generation assumptions. Finally,
our theoretical analysis leads to a satisfactory explana-
tion of the effectiveness of a related method proposed
in (Ando & Zhang, 2005).
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