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Abstract  
Correlation is one of the most widely used 
similarity measures in machine learning like 
Euclidean and Mahalanobis distances. However, 
compared with proposed numerous discriminant 
learning algorithms in distance metric space, 
only a very little work has been conducted on 
this topic using correlation similarity measure. In 
this paper, we propose a novel discriminant 
learning algorithm in correlation measure space, 
Correlation Discriminant Analysis (CDA). In 
this framework, based on the definitions of 
within-class correlation and between-class 
correlation, the optimum transformation can be 
sought for to maximize the difference between 
them, which is in accordance with good 
classification performance empirically. Under 
different cases of the transformation, different 
implementations of the algorithm are given. 
Extensive empirical evaluations of CDA 
demonstrate its advantage over alternative 
methods. 

 

1.  Introduction 

Correlation (also termed as normalized correlation, 
correlation coefficient, Pearson correlation, or cosine 
similarity, hereafter correlation for simplicity) is a widely 
used measure to describe the similarity s  between two 
vectors, u  and v , in pattern classification and signal 
processing problems like Euclidean distance and 
Mahalanobis distance. 
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For example, in face recognition, the framework (Kittler, 
2000) combining principal component analysis (PCA), 
linear discriminant analysis (LDA) (Fukunaga, 1990), and 
nearest neighbor (NN) based on correlation measure 
achieved obviously superior performance to other 
frameworks, such as the combination of PCA, LDA, and 
NN based on Euclidean metric or weighted Euclidean 
metric, on a large scale comparative evaluations such as 
BANCA (Kittler, 2000) etc. In gene expression analysis 
(Brown, 2000) and document categorization problems 
(Han, 2001; Peterson, 2005), correlation was found to be 
an effective measure. Besides these areas, in signal 
processing community, correlation and correlation-based 
filters (Kumar, 1986; Mahalanobis, 1987; Xie, 2005) were 
also widely used to detect the existence of some specific 
signals. 

However, compared with the Euclidean or Mahalanobis 
distance, the correlation is not a metric due to that it 
cannot satisfy the non-negativity and the triangle 
inequality. And different from the situation that there are 
so many discriminant learning algorithms in distance 
metric space such as LDA, relevant component analysis 
(RCA) (Hillel, 2005), distance metric learning with side-
information  (DMLSI) (Xing, 2003) etc, there is only a 
very little discriminant learning work based on correlation 
similarity measure. To the best of our knowledge, this 
type of research includes canonical correlation analysis 
(CCA) (Hardoon, 2004), correlation filter design such as 
minimum average correlation energy (MACE) filter 
(Mahalanobis, 1987), etc. So it is very interesting to 
extend the discriminant learning research in correlation 
similarity space from a new way. 

On the other hand, from the research (Belhumeur, 1997; 
Kittler, 2000; Martinez, 2005) on face recognition about 
the framework of PCA, LDA and correlation-based NN 
classifier, we knew that PCA was mainly used to reduce 
feature dimension and solve the singularity problem of 
LDA due to small sample size, LDA was used to find the 
optimum discriminant projections to make the Euclidean 
metric-based within-class scatter denser and between-
class more scattered over training set, and the correlation-
based NN is used to find the best match in the gallery set 
for a probe face according to their correlation similarity 
during evaluation stage. We could notice that although 
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correlation-based NN does not match the Euclidean 
metric-based LDA very much, it can achieve better 
performance than Euclidean metric-based NN. Naturally, 
we would wonder how about the performance if we 
directly substitute correlation measure for Euclidean 
metric during the discriminant learning stage. 

In this paper, we will explore the above questions and 
propose a novel discriminant learning algorithm in 
correlation measure space, Correlation Discriminant 
Analysis (CDA). CDA combines the discriminant 
learning with correlation measure together, seeks for the 
optimum transformation to maximizing the difference 
between within-class correlation and between-class 
correlation. This difference can be empirically considered 
as a criterion for the classification performance. In 
extensive experimental studies on publicly available 
databases and real applications we show that the proposed 
learning algorithm can consistently improve the 
performance of original correlation-based classification 
further, and achieve the comparable or even better 
performance with alternatives. 

The rest of the paper is organized as follows. In section 2, 
we will briefly introduce the related work and compare 
them with CDA. In section 3, the details of CDA 
algorithm and optimization methods under different 
situation are given. In section 4, thorough experiments are 
made among CDA and other supervised discriminant 
learning algorithms. Finally, section 5 gives the 
conclusions. 

2.  Related Work  

In this section, we will first review the most popular 
discriminant learning techniques in distance metric space, 
such as LDA, relevant component analysis (RCA) (Hillel, 
2005), distance metric learning with side-information  
(DMLSI) (Xing, 2003), and then introduce some related 
work in similarity measure domain. 

As we know, LDA find the best projection directions on 
which the within-class scatter matrix is minimized while 
the between-class scatter matrix is maximized under the 
Fisher criterion (Fukunaga, 1990). To solve its singularity 
problem when the number of samples is much smaller 
than the feature dimension, PCA is often used prior to 
LDA; Not considering the maximization of between-class 
scatter matrix which stands for the negative equivalence 
constraints, RCA is only concerned with the minimization 
of sum of squared Mahalanobis distances of positive 
equivalence constraints; under this criterion, the optimum 
transformation is the inverse of within-class scatter matrix. 
Different from RCA, DMLSI tries to learn an optimum 
Mahalanobis metric under both positive and negative 
constraints, in which, the sum of squared Mahalanobis 
distances from positive constraints is minimized given the 
sum of Mahalanobis distances from negative constraints 
being over the constant value. 

LDA, RCA, and DMLSI are only concerned with global 
Euclidean or Mahalanobis structure. Sometimes in the 
context of sparse data such as face recognition, these 
distance metrics were not optimal (Kittler, 2000). Several 
attempts have made to take the advantage of non-linear 
structure to provide more discriminatory information 
while keeps LDA structure untouched. In the Smith et 
al.’s (2006) work, an angular LDA (ALDA) was 
presented. In their method, the LDA transformation was 
first applied to the probe vector, and then a non-linear 
transformation was used to project the probe LDA vector 
into the probe ALDA vector whose ith component was 
the angle between the probe LDA vector and the ith LDA 
component axis. Standard classifier can be designed in 
this ALDA space. This work still separated the 
optimization procedure from the metric or measure 
learning. 

Correlation similarity measure was also widely utilized 
together with k-nearest neighbor algorithms to replace 
traditional Euclidean/Mahalanobis distance. Han et al., 
(2001) proposed a weight adjusted k-nearest neighbor 
classification method to learn the weights for different 
features in correlation similarity; Peterson et al., (2005) 
presented a genetic optimization algorithm to solve the 
above problem to optimize both the feature weights and 
offsets to features according to a simple empirical 
criterion. The main drawback of these methods is that the 
transformation is only in diagonal form and the weight of 
every feature is assumed to be uncorrelated. 

Canonical correlation analysis (CCA) (Hardoon, 2004) 
might be the most successful dicriminant learning 
methods dedicated to correlation measure till now. It can 
be viewed as the problem of finding basis vectors for two 
sets of variables such that the correlations between the 
projections of the variables are mutually maximized. So if 
one set of variables is taken as class labels, CCA can be 
explicitly utilized to realize a supervised linear feature 
extraction and subsequent classification (Loog, 2004). 
The similar method is also straightforwardly used in 
partial least squares (PLS) (Barker 2003) for classification 
in which it also involves the correlation between two sets 
of variables with different constraints. 

There are two main problems for CCA and PLS to be 
applied to classification problems. The first one is that 
different encoding modes for class labels can result in 
different performances. Johansson (2001) proposed the 
one-of-c label encoding to associate a sample with its 
corresponding class label; Sun (2007) proposed a soft 
label encoding method based on fuzzy k-nearest neighbor 
method. The second problem is that they are not suitable 
for open-set verification applications (Phillips, 2000). In 
open-set verification, the classes in gallery or probe set 
might never appear in the training set (for example, the 
verification of a person and his claimed passport photo, 
which both never appear in the training face database). 
However, the transformations learned by CCA or PLS 
during training stage are class-specific and related to the 
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classes which appear in the training set. When verifies 
two new samples, the system needs to first find 
projections separately for two samples online to 
discriminate them from training faces and then decide 
whether they belong to the same class or not. That is 
unfavorable for real applications. 

The correlation-based filter design methods have the 
similar problem when used in the open-set verification 
applications and need to design the class-specific 
correlation filter. This type of  methods include the 
minimum variance synthetic discriminant function filter 
(Kumar, 1986), which minimizes the correlation output 
noise variance and typically suppresses high frequencies 
in order to achieve noise tolerance, the minimum average 
correlation energy (MACE) filter (Mahalanobis, 1987), 
which minimizes the average correlation output energy 
and emphasizes high spatial frequencies in order to 
produce sharp correlation peaks, and the optimal tradeoff 
filter (Refregier,1990) which is designed to balance these 
two criteria by minimizing a weighted criterion. 

3.  Correlation Discriminant Analysis  

Correlation Discriminant Analysis (CDA) is a method 
that seeks a global linear transformation to maximize the 
correlation of samples from the same class and minimize 
the correlation of samples from different classes in the 
transformed space. Compared with LDA, RCA and 
DMLSI, CDA combines the similarity measure learning 
with the supervised discriminant learning in a very simple 
way to explore the nonlinear information instead of only 
linear information. And compared with CCA, PLS and 
correlation-based filter design methods, CDA only cares 
the correlation of samples between-class and within-class, 
instead of the correlation between samples and their 
corresponding labels; the trained projection matrix is 
class-irrelevant. So the verification between two new 
samples which both do not appear in the training set can 
be easily conducted without modifying the trained 
projection matrix. The details of CDA are given as 
follows. 

For general multi-class classification problems, given a 
training set 1{ , }n

i i it =x , d
i ∈x R is the sample feature 

vector, it is the corresponding class label, the total class 

number is c and the jth class has jn samples. Under a 

transformation d d×∈w R , the feature vector x  is 
projected into =y wx .1  In the transformed space, the 
within-class correlation wS , between-class correlation 

————— 
1Note that, by putting the original dataset through a non-

linear kernel function φ , non-linear transformation can also be 
learned. 

bS and total correlation tS  over the training set can be 
defined separately as follows: 
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Here wN and bN  are the numbers of sample pair which is 
from the same class or different classes. So 

2
w bN N n+ = ,                                    (5) 

2
w w b b tN S N S n S+ = ,                           (6) 

2

( )w b w t
b

nS S S S
N

− = − .                   (7) 

Define T=A w w , then A should be symmetric and 
positive semi-definite, 0≥A . 

Similar to LDA algorithm which maximizes the within-
class scatter matrix and minimizes the between-class 
scatter matrix, a simple way of defining a criterion for the 
desired transformation is to demand the larger difference 
between wS and bS , which generally stands for better 
discriminant power to separate the sample pairs from the 
same class from the pairs from different classes. This 
gives the optimization problem: 

max w bS S−
A

  or   max w tS S−
A

          (8) 

s.t.   0≥A .                            (9) 

This problem has an objective that is nonlinear and non-
convex in the parameters A . So the optimization 
problem is different from the convex optimization 
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problems of LDA, CCA and DMLSI. We also note that, 
while one might consider various criteria to (8), 

( 1)w bS S +  would not be a good choice mainly due to its 
much more complex optimization process. 

3.1  The Case of Diagonal A 

If we restrict A to be diagonal, this corresponds to 
learning a transformation in which the different axes are 
given different “weights” to the correlation similarity in 
the transformed space. We define 2 2

1diag( , , )dρ ρ=A "  

and 1diag( , , )dρ ρ=w " . So the optimization of 
problem (8), (9) becomes the following unconstrained 
maximization problem 

1

1

( ) ( , , )d w t

c
T T

i i i
i

f f S S

p

ρ ρ

=

= = −

= −∑

A

m m m m

"
         (10) 

Here ip  is the percentage of the number of sample pairs 

from ith class in wN ; im  and m  are the mean value of 
ith class and total samples after projection and 
normalization; 
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Using Newton-Raphson gradient-based optimization 
method, the above maximization problem can be solved.  

1

( ) ( )2 2
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Here the ikx  is the k-th component of sample ix . 
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can be computed in the similar way. 

Because only the relative values of 1, , dρ ρ"  affect the 

correlation value, we can set 1 1ρ =  and only need to 

estimate 2 , , dρ ρ" . 

3.2  The Case of Full A 

More generally, in the case of learning a full matrix A, the 
constraint that 0≥A becomes slightly difficult to enforce, 
and Newton’s method often becomes prohibitively 
expensive (require 6( )O n  time to invert the Hessian of 

2n parameters). Similar to the optimization problem in 
DMLSI (Xing, 2003), using gradient descent and iterative 
projections (Rockafellar, 1970), we derive a different 
algorithm for this setting. 

 

 

 

 

 

 

 

Figure 1. Gradient ascent +Iterative projection algorithm for full 
CDA. Here 

F
• is the Frobenius norm defined on matrices 

( 2 1/ 2( )ijF i j
M M= ∑ ∑ ). 

We will use a gradient ascent step on f(A) to optimize (8), 
followed by the method of iterative projections just to 
ensure that the constraints (9) hold. Specifically, we will 
repeatedly take a gradient step : ( )fα= + ∇AA A A , and 
then repeatedly project A into the sets { : 0}C = ≥A A . 
This gives the algorithm shown in Figure 1. 

To calculate derivatives of ( )f A  with respect to klA , 
which denotes the k-th row and l-th column component 
of A , we just need to compute the derivatives of the 

correlation of i-th and j-th samples ij

kl

s
A

∂

∂
 and sum up all 

the derivatives between-class and with-in class separately: 
T
i j

ij T T
i i j j

s =
x Ax

x Ax x Ax
                    (13) 

If k=l,  

    Initialize A; 
Repeat  

Repeat 
: argmin { : }

F
C′ ′ ′= − ∈AA A A A  

Until A converges 
: ( )fα= + ∇ AA A A  

Until convergence 
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In the inner iteration of this algorithm, the projection step 
onto C, the space of all positive-semi definite matrices, is 
done by first finding the diagonalization T=A U ΛU , 
where 1diag( , , )nλ λ=Λ …  is a diagonal matrix of A’s  

eigenvalues and the columns of n n×∈U R  contains A’s 
corresponding eigenvectors, and taking T′ ′=A U Λ U , 
where 1diag(max(0, ), , max(0, ))nλ λ′ =Λ …  (Golub, 
1996). 

Also we can set 11 1A = and only need to estimate other 
parameters. 

4.  Experimental Result 

To evaluate the performance of proposed CDA algorithm, 
some classification experiments are performed on two 
types of data: (a) 7 UCI machine learning repository: 
balance, glass, lense, sonar, thyroid, vehicle and wine 
(Blake & Merz, 1998). (b) ORL human face dataset for 
face recognition (available at http://www.uk.research.att. 
com/facedatabase.html); these datasets are different in the 

feature dimension (from 4 to 3280), sample size (from 30 
to 800), the class of number (from 3 classes to 40 classes)  

and the physical meaning. So the experimental result on 
this large scale of datasets should be reliable. 

The methods used in the following comparisons include: 

Ed-NN: Euclidean distance based 1-nearest neighbor 
classifier; 

Co-NN: Correlation measure based 1-nearest neightbor 
classifier; 

PCA: Principal component analysis; 

LDA: Linear discriminant analysis; 

CCA: Canonical correlation analysis for classification. 
Here we employ one-of-c label encoding (Johansson, 
2001);  

d-CDA: The case of diagonal correlation discriminant 
analysis. 

f-CDA: The full matrix correlation discriminant analysis; 

Ke-SVM: Gaussian Kernel Support Vector Machines 
(Vapnik, 1995) for classification. Here we use one-vs-
others strategy to solve the multi-class classification 
problem by learning one binary classifier for each class; 
The Gaussian kernel parameters and C are decided by 
experiments; 

Ke-RVM: Gaussian Kernel Relevance Vector Machines 
for classification (Tipping, 2001). One-vs-other strategy is 
also used here to design multi-class classifiers; The 
Gaussian kernel parameters are decided by experiments. 

The details of experiments are reported separately. 

4.1  Experiments on UCI Data 

All contrastive experiments are based on the identical 
partition of the training/test set for each dataset of UCI. In 
each round of experiment, half of total samples are 

Method balance glass lenses sonar thyroid vehicle wine 

Ed-NN 78.59 68.45 76.64 83.14 95.04 68.59 94.79 

Co-NN 81.30 68.94 78.72 84.19 89.44 69.52 94.38 

LDA+Ed-NN 87.74 58.91 78.03 68.60 94.24 73.07 98.11 

LDA+Co-NN 75.62 59.01 76.76 58.52 85.48 72.03 97.66 

CCA+Ed-NN 87.50 57.24 76.09 71.52 92.83 73.26 97.35 

d-CDA+Co-NN 84.34 71.23 81.81 84.56 90.65 71.91 95.90 

f-CDA+Co-NN 87.93 72.55 82.72 81.38 91.29 74.35 97.04 

Ke-SVM 91.76 74.27 83.85 83.98 96.88 78.01 95.80 

Ke-RVM 95.85 73.15 76.94 80.90 93.45 76.58 96.65 

Table 1. The comparison of classification accuracies on various UCI data sets (%) 



 Discriminant Analysis in Correlation Similarity Measure Space 
 

 

randomly selected for training, and other samples are used 
for testing. The experiments are repeated 100 times. 

The recognition results on all datasets are given in Table 1, 
from which we can observe that almost on all datasets 
except sonar dataset, the d-CDA and f-CDA outperform 
Co-NN; That demonstrates the inclusion of discriminant 
information in correlation measure can improve the 
performance. However, on sonar datasets, f-CDA is worse 
than d-CDA. That is mainly due to that the feature 
dimension of 60 and the number of training sample is 
only 104 and in f-CDA, there are about 1800 parameters 
to be estimated. So over-fitting problem happened on 
training set and cause the performance degrading on test 
set. 

We also can observe d-CDA+Co-NN framework can 
achieve overall better performance than LDA+Co-NN, 
especially on sonar and glass datasets. That is mainly due 
to the nonlinear distribution of these two datasets. 
Obviously, d-CDA or f-CDA algorithm can explore and 
utilize more information under this situation. 

For the purpose of comparison, in the above table, we also 
give the result based on the state-of-art kernel-methods, 
such as Kernel SVM and Kernel RVM. Although it is not 
very fair to directly compare d-CDA and f-CDA with 
these two powerful nonlinear machine learning methods, 
we can see that on some data sets, their performances are 
still comparable. 

In computation efficiency, both the optimization of d-
CDA and that of f-CDA are the gradient-based iteration 
processes. Specifically, for d-CDA, each iteration consists 
of computing the gradient ( )f∇ ρ , and the optimum step 
along the gradient direction. If the number of iteration is 
m, the total computation would be 2( )O mdn . For f-CDA, 
the computation is much more complex due to the 
computation of the gradient of ( 1) 2d d +  parameters, 
the sum of 2( )O n  correlations between-class and within-
class and also the eigen-decomposition of the full matrix. 
So the computation will be 2 3 4( ( ))O m d n d+ . In the 
experiment, the running time of d-CDA algorithm (in 
MATLAB, on a PIV 3.4GHz) is less than 9 seconds for 
glass, and about 26 seconds for the sonar problems in one 
round, and the corresponding times for f-CDA are about 
70 seconds and 200 seconds. As mentioned earlier, the 
target function of CDA is not convex. The gradient-based 
methods can not guarantee to get the global optimum 
point. To partially solve this problem, we run the d-CDA 
and f-CDA several times with random initial values and 
select the best result. This also makes the training process 
a little longer. 

4.2  Application of CDA to Face Recognition 

The characteristics of face recognition different from 
previous classification problems are that there are more 

classes and fewer training samples. So in this experiment 
we want to evaluate the performance of CDA on the 
problems with large class number and sparse data 
distribution. 

The experiments are randomly repeated 10 times for ORL. 
All contrastive experiments are based on the identical 
partition of the training/test set for each dataset. For ORL 
dataset, the training set size 200 is far less than the sample 
dimension using Gabor wavelets about 3000 dimensions. 
To overcome this problem, all the algorithms are 
preceded by PCA and then performed in the transformed 
120-dimensional PCA subspace which accounts for 95% 
of total energy. The comparison is shown in table 2 (note 
in this experiment, due to the optimization complexity, we 
only evaluate the PCA+d-CDA+Co-NN framework and 
do not evaluate the performance of f-CDA) 

Table 2 Face recognition accuracies on ORL databases (%). 

METHOD ORL 

PCA+Ed-NN 93.75 
PCA+Co-NN 94.10 

PCA+LDA+Ed-NN 97.7 

PCA+LDA+Co-NN 98.5 

CCA+Ed-NN 97.1 
PCA+d-CDA+Co-NN 99.5 

From the table 2, we first can confirm that correlation 
measure-based methods are always better than Euclidean 
metric-based methods nomatter in PCA space or 
PCA+LDA space, which coincides with the conclusion of 
Kittler (2000) very well. Besides this, we can find the 
similar trend that by incorporating the discriminant 
information, d-CDA can achieve much better 
performance than PCA+Co-NN framework, and better 
than the popular PCA+LDA+Co-NN framework for face 
recognition. 

5.  Discussion and Some Further Research Topics  

We propose a novel discriminant learning algorithm in 
correlation measure space, Correlation Discriminant 
Analysis (CDA). In this framework, based on the 
definitions of within-class correlation and between-class 
correlation, the optimum transformation can be sought for 
to maximize the difference between them, which is in 
accordance with good classification performance 
empirically. Under different cases of the transformation, 
diagonal and full metrics implementations of the 
algorithm are given. Extensive empirical evaluations of 
CDA demonstrate its advantage over alternatives methods. 

Although in this paper both the d-CDA and f-CDA are 
limited to their linear transformation forms, in fact, they 
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can be generalized to the corresponding kernel versions 
via the kernel trick. However, compared with the simple 
extension of CCA to kernel CCA and LDA to kernel LDA, 
the extension of CDA to kernel CDA is not very easy. 
The similar method to (Yeung, to appear) to represent the 
projection matrix in feature space can be adopted to solve 
this problem. 

And another interesting topic might be to combine the 
sparse Bayesian learning (Tipping, 2001) with CDA to 
solve the over-fitting problems and at the same time fulfill 
the feature selection by CDA. 
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