Learning for Efficient Retrieval of Structured Data
with Noisy Queries

Charles Parker
Alan Fern
Prasad Tadepalli

PARKERQEECS.OREGONSTATE.EDU
AFERN@QEECS.OREGONSTATE.EDU
TADEPALL@QEECS.OREGONSTATE.EDU

School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331-5501

Abstract

Increasingly large collections of structured
data necessitate the development of efficient,
noise-tolerant retrieval tools. In this work,
we consider this issue and describe an ap-
proach to learn a similarity function that is
not only accurate, but that also increases the
effectiveness of retrieval data structures. We
present an algorithm that uses functional gra-
dient boosting to maximize both retrieval ac-
curacy and the retrieval efficiency of vantage
point trees. We demonstrate the effectiveness
of our approach on two datasets, including
a moderately sized real-world dataset of folk
music.

1. Introduction

The enormous storage capacity of modern computer
systems has led to huge collections of structured data
including images, audio clips, and DNA sequences.
This in turn necessitates the development of effec-
tive tools for efficient and noise-tolerant retrieval of
such structured data through natural queries, i.e., us-
ing data of the type that is in the dataset. The
so-called “query-by-content” (Faloutsos et al., 1994;
Ghias et al., 1995) literature aims at achieving exactly
this: Giving the ability to query collections of music
using music, images using images, and gene sequences
using other gene sequences.

Since the queries are in general noisy versions of the
targets, the problem of retrieving the closest match
to the query can be formalized by defining a distance
function d over the domain of possible structures D so

Appearing in Proceedings of the 24" International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

that d : D x D — R represents the dissimilarity be-
tween the target and the query. Retrieving the near-
est neighbor of a query structure q in a set of tar-
gets 7 under this definition, then, is simply finding
argmingc d(t, q).

In this paper, we consider the problem of learning the
distance function from a training dataset S over a tar-
get set T, with tuples of the form (t,q) where t € T
and q is a query for which the correct answer is t.

Previous attempts to learn distance functions (Pardo
et al., 2004; Tsochantaridis et al., 2004; Parker et al.,
2006) in these domains have had a great deal of suc-
cess, achieving high degrees of accuracy with mod-
est training data. However, the distance functions
are often highly complex, making the computation of
argming ., d(g, t) through sequential search very ex-
pensive for large |7|. A group of data structures,
known collectively as metric access methods or MAMs,
help avoid the sequential search. The general approach
is to use a tree that partitions the structure space
based on distance. Given this tree and a query, groups
of targets at long distances from the query can be elim-
inated from the search with a single distance computa-
tion. Cover trees (Beygelzimer et al., 2006), k-d trees,
m-trees, and vp-trees (Hjaltason & Samet, 2003) are
all examples of this approach.

There are some problems to be overcome in using these
methods: First, to use an MAM for search, d must be
a metric distance function. Unfortunately, in many
practical cases, the learned distance function is not a
metric (Skopal, 2006). Second, there are few guaran-
tees that MAMs will provide increased search speed
even if d is metric (Weber et al., 1998).

Recent work (Skopal, 2006) has addressed the former
concern. We here turn our attention to the latter. In
Section 2, we introduce the problem of learning dis-
tance functions for sequence matching and outline a

Learning for Efficient Retrieval of Structured Data with Noisy Queries

gradient boosting algorithm for it. In Section 3, we
present an extension of this algorithm that maintains
high accuracy and increases retrieval efficiency. This
is accomplished by first building a vantage-point tree
(vp-tree) over the given data. We then derive a def-
inition of loss and margin based on the constructed
tree and maximize this margin using gradient descent
boosting. Section 4 shows experimental results in two
sequence matching domains including a real-world col-
lection of folk songs. Section 5 discusses the results
and speculates on the possible extensions.

2. Learning to Match Sequences

In this section, we introduce the sequence matching
problems and describe a gradient boosting approach
to learning an edit distance function, which is central
to sequence matching.

2.1. Sequence Matching Problems

A variety of sequence matching problems are already
well-documented in the literature (Pardo et al., 2004;
Krogh et al., 1994). In a generic version of the prob-
lem, we are given a set of target sequences 7. Associ-
ated with this target set is a set of query sequences Q,
each having a correctly matching target in 7. The goal
is to design a function that maps all queries onto their
correct targets. In the speech recognition domain,
these sequences are composed of phonemes. Targets
are the dictionary sequences and queries are sequences
spoken by a user.

Typically, the mapping from queries to targets is done
by designing a distance function d : 7 x Q +— R which
is to be minimized at the correct target. If t; € 7 is
target mapping correctly to a query q;, then our dis-
tance function should satisfy t; = argmin, ., d(t, q;)
for all (t; € 7,q; € Q).

The distance function d is often defined using the no-
tion of sequence alignment. That is, d(t,q) returns a
distance that is the sum of the lowest cost series of
edit operations (match, replace, delete, and insert)
that transforms the target t into the query sequence
q. Each edit operation is associated with a costs ¢
such that c¢(a, b) gives the cost for matching character
a in the target with b, c(a, —) gives the cost for insert-
ing a, and ¢(—, a) gives the cost for deleting a. These
cost functions serve as our parameterization of d. Fig-
ure 1 shows an alignment between the target sequence
BRAIN and the query sequence BLANE, indicating the
series of edit operations in the top row.

The lowest cost alignment of two sequences can be
found efficiently using the Smith-Waterman algorithm

m r m d m i
B R A I N -
B L A - N E

Figure 1. An Example of Sequence Alignment.

(Smith & Waterman, 1981). Let align(, j,t,q) be the
cost of the optimal alignment between the postfix of t
starting at position ¢ with character ¢; and the postfix
of q starting at j with character ¢;. This function has
the following decomposition,

align(i, j, t,q) =
c(ti,q;) +align(i + 1,5 + 1,t,q)
min{ c(—,q;) + align(i,j + 1,t,q) (1)
c(t;, —) +align(i + 1,4, t,q)

Using dynamic programming, this procedure com-
pletes in time proportional to the product of the se-
quence lengths. One can also define versions of the
algorithm that ignore prefixes or suffixes in the query
or target. See Meek (2004) for further discussion.

Although the cost function can occasionally be con-
structed by hand, it is often useful to be able to learn
cost functions from a training set with examples of
queries aligned with their proper targets. Historically,
generative approaches have been favored for this task
(Krogh et al., 1994). In recent years, however, sev-
eral discriminative approaches (Tsochantaridis et al.,
2004; Joachims, 2003) have been presented that ap-
pear to be more effective in some sequence matching
domains. For this work, we use one of these recently
suggested methods, discussed in the following section.

2.2. Gradient Boosting

In previous work, we advocated the use of gradient
boosting as a method for learning edit distance func-
tions (Parker et al., 2006). We will briefly revisit the
derivation, as it provides the basis for our new deriva-
tion in Section 3.3.

The basic idea is to iteratively learn the distance func-
tion by calculating the gradient at each replacement
pair (a,b). The gradient is designed to push the cost of
the replacement c(a, b) in the direction that moves the
training queries closer to the correct targets and fur-
ther from the closest incorrect targets. In spirit then,
the algorithm is a margin-maximization approach.

We first define the margin for each training example
q;. Define t; to be the correct target given the query
qi, and define t; to be the closest incorrect target given
the current set of replacement costs ci. Our structure

Learning for Efficient Retrieval of Structured Data with Noisy Queries

margin s; at q; is defined as how much closer q; is to
the correct target than to the closest incorrect target
under d:

si = d(t;,q) — d(t;,q) (2)

Now define f(a,b,x,y,a) to be the number of times
character a is replaced with character b in the optimal
alignment a of sequences x and y. If a; is the opti-
mal alignment of q; and t; then the distance function
decomposes nicely as

d(qi, t:) = Z Z ce(a,b)f(a,b,ti, qi,a;) (3)
a b

with a similar expression for t; and its optimal align-
ment a;. Defining the shorthand

Afi(aa b) = f(a7 bu ti7 q;, ai) - f(au b7 t:iu q;, aAz)
then substituting into the original expression of margin
gives us

si=—>_ > crla,b)Afi(a,b) (4)
a b

To form a loss function from this margin, a technique
is borrowed from LogitBoost (Friedman et al., 2000),
where the loss function is given as log(1 + exp(s;))
Replacing s; with the margin in Equation 4, we have
the loss defined for a single training query q;. If we
sum all of these losses, we have the cumulative loss L
over the entire training set.

L=Y logll +exp(~ > ela,b)Afi(a,b)] (5)
% a b

To minimize this loss over the training set, we compute
the gradient, dxy1, at each pair:

oL
Srt1(a,b) = Fen(a,b)
Afi(a,b)

== Z 1+ exp(za, Zb’ ck(a’7 b,)Afi(a/7 b,))

1

The gradient step 41 is then added to the current set
of replacement costs ¢, thus modifying the distance
function, and the process is repeated. As the itera-
tions progress, we expect that the distance function
will become increasingly more accurate on the train-
ing queries In practice, Parker et al. (2006) gives some
convincing empirical demonstrations.

In the next section, we first explain metric access
methods and their use. We then attempt to use gradi-
ent boosting to learn a distance function that retrieves
with high efficiency under a given metric access data
structure while maintaining high accuracy.

3. Optimizing for Efficiency

We have seen in the previous section how to learn dis-
tance functions that perform with high accuracy. How-
ever, finding the correct target structure given a query
structure still requires computing the distance func-
tion from the query to every target in the target set.
These computations may be complex and not practi-
cal for even reasonably large target sets (Dannenberg
et al., 2003). Moreover, the matching of the query to
every possible target in the target set seems intuitively
unnecessary.

Metric access methods attempt to remedy this situa-
tion. Essentially, all of these methods construct a tree
or graph over the target set using the distance func-
tion. The tree is structured so that the distance from
a query to certain elements in the target set implies
that certain other elements need not be considered
in the search. Although the details of this structure
vary from method to method, these trees all require
that the distance function be a metric. This means
it must satisfy four criteria for all elements in the do-
main, namely, positivity, identity, symmetry, and the
triangular inequality.

The first three can be satisfied with relative ease in
the sequence alignment domains. Positivity can be
enforced by taking negative logarithms of probabili-
ties in the generative method, and by ensuring that
no ci(a,b) ever gets within some e of zero in gra-
dient boosting. Identity can be enforced just by re-
turning 0 if the arguments are equal. Symmetry can
be enforced by creating a slightly redefined distance
function d* from the original d, such that d*(x,y) =
min(d(z,y),d(y,z)), or failing this, in other, more
domain-dependant ways. The triangular inequality is
far more difficult. Recent work, however, aims at mod-
ifying a distance function so that it satisfies the trian-
gular inequality with high probability. It is this work
that we review next.

3.1. Enforcing the Triangular Inequality

First, observe that if the triangular inequality fails on
some three points it is because the distance between
some pair of these is much greater than the distance
between the other two pairs. To “repair” this triple
so that the triangular inequality is satisfied, we need
only close the gap between these distances. If we can
modify distance function d in a way that maintains
the ordering on all distance computations, but repairs
all broken triples, we have maintained the retrieval
accuracy and transformed d into a metric.

The insight of Skopal (2006) is that the simple ap-

Learning for Efficient Retrieval of Structured Data with Noisy Queries

plication of any concave function g to the computed
distances will do exactly this: Since g is monotonic, it
insures that the computed distances maintain their or-
dering. Also, since g is concave, the distances between
elements in the new metric space move closer together,
so the triangular inequality is satisfied in more triples.

The caveat to this is that if g has too high of a degree of
concavity, then all distances as measured by d become
nearly the same. Because all metric access methods
rely on some distances being far greater than others
to do efficient search, this makes them useless in the
context of d and we are back to where we started. We
would like then, to have a function g with concavity
sufficient to repair all non-triangular triples, but no
more.

For example, Skopal (2006) proposes the function

g(z) = e, If we apply this to d, we have a new
distance metric.

dy(z,y) = g(d(z,y)) = d(z,y) 7= (6)

As w — o0, the function reaches maximum concavity
and as w — 0 there is no concavity at all. Thus, we
do a simple line search of w to find the point at which
the triangular inequality is “sufficiently” satisfied to
use MAMs. To check how well a given d, satisfies the
triangle inequality, we can sample triples from 7. Our
experiments in Section 4 show that if the triangular
inequality is satisfied with P > 0.99, the errors en-
countered when using metric access methods will be
negligible, but this is domain-specific.

Thus, it is possible to create a near-metric distance
function from a distance function learned by the meth-
ods above, though its usefulness, we note, must be de-
termined empirically. We will now discuss an MAM,
the vp-tree, and show how a near-metric distance func-
tion can be optimized to a particular instance of this
MAM using gradient boosting.

3.2. The vp-tree

The structure we use for these experiments is the van-
tage point tree or vp-tree (Hjaltason & Samet, 2003).
We choose the vp-tree due to its relative simplicity and
straightforward application, but our techniques may
be easily applied to other MAMs. This is discussed in
Section 5.

Each node in the vp-tree is defined by a chosen tar-
get structure from the target set, the vantage point.
If there is only a single target in the target set, this
target is the vantage point and nothing more need be
done. If there is more than one, all targets in the tar-
get set are sorted according to their distance from the

vantage point. The left child of the given node is then
constructed recursively using the subset of targets less
than the median distance from the vantage point, and
the right child is similarly constructed from the other
subset. Algorithm 1 shows this construction algorithm
in pseudocode.

To see how we can leverage the properties of a met-
ric distance to speed up search, we first consider the
following definition:

dv(t,q) = |d(t,v) — d(q, V)| (7)

the metric properties of symmetry and the triangular
inequality give us

d(t,q) > |d(t,v) — d(q,v)| = dv(t,q) (8)

so that distances get smaller when measured by d. as
opposed to d. It follows that:

dy(t,q) >7=d(t,q) > 7 (9)

Suppose we wish to find the nearest neighbor of a
query q within range 7, and we are at a node n in
the tree with vantage point v. Let the median dis-
tance between v and all targets under n be m. Hence
d(t,v) < m for all targets t in the left subtree. If
d(q,v) > m + 7, then it follows from Equations 7
and 9 that the left subtree of m may be eliminated
from consideration. Similarly, if d(q,v) < m — 7
then we may eliminate the right subtree. However,
if m+4+7 > d(q,v) > m — 7 then we must do an ex-
haustive search of all descendants of n.

The choice of the vantage point, then, is crucial to the
success of the tree. We would like to choose a vantage
point such that few of the distances to its children are
close to the median distance. In this work, however,
we take an orthogonal approach. Given a tree and
the associated vantage points, we will modify the dis-
tance function to obtain better performance from the
tree. More specifically, we will define a notion of loss
and margin associated with the constructed tree, then
compute gradients that modify the distance function
to decrease the loss and increase the margin.

3.3. Tailoring Distance Functions to vp-trees

We compute the functional gradients against the con-
structed vp-tree in much the same way as was done
in Parker et al. (2006): For each training query, we
consider each event from the best alignment of each
non-leaf target on the query’s path from root to leaf.
The intuitive direction of the gradient is obvious from
the construction of the vp-tree: At each node in the
path, the query score should be moved as far as possi-
ble to the correct side of the median, thereby allowing

Learning for Efficient Retrieval of Structured Data with Noisy Queries

Algorithm 1 Constructing a vp-tree
T is a set of target structures, t is a target structure,
n is a node in the tree with children n; and n,., and
d is a metric distance function. my is the median
score at node n and t, is the vantage point.
function CONSTRUCT-TREE(n, 7, d)
s |T]
if s =1 then
tn — T[0]
return
end if
tn < CHOOSE-VANTAGE-POINT(7)
sort T on d(ty,t; € T)
mp — d(ty,, T[s/2])
CONSTRUCT-TREE(n;,
CONSTRUCT-TREE(n,,
end function

T10:s/2], d)
T[s/2: 5], d)

the search to progress down the tree even at high val-
ues of 7. The margin for each query and path node,
then, is the amount by which it lies on the correct side
of the median. Loss is incurred when this margin is
negative, and the gradient will attempt to make this
margin as large as possible.

This loss is not uniform as we travel down the path:
Distances within 7 of the median at a particular node
n forces us to abandon the tree-search and perform a
linear scan of all leaves that are descendants of n. If
n is one level above the leaf node, the computational
cost of being within 7 at n is a single extra distance
computation. However, if n is the root, we fail to
eliminate a subtree containing |7|/2 targets and our
cost increases on that order. More specifically, suppose
we have targets {t1,to,...} on a path from root to
leaf for a given query, where t; is the root. The loss
function at t; is weighted by a factor of |7]/27.

After the gradient is computed, it is added to the cur-
rent distance function and the process is repeated.
However, there is the possibility that this modifica-
tion of the distance function has invalidated the tree,
either by gross violation of the triangular inequality
or by changing the distance between targets such that
some are now in the incorrect subtrees of their par-
ent nodes. These situations can be remedied at each
step by applying the triangle-generating procedure of
Section 3.1, and by rebuilding the tree where it is in-
correct.

More formally, consider a training set & and con-

structed vp-tree V' with queries {qi,q2,...,qg/}
Each of these queries has a single path
{ni1,n4,...,n;} € V from root to the leaf

containing the correct target, where p is the number
of nodes in the path. Each node in this path has an
associated target as its vantage point. Call the targets
associated with the path of q; {t;1,ts,...,tip}-

We now compute the margin for each pair (t;;,q;),
defined as the difference between median distance to
t;; and d(t;;,q;). The larger this distance is, the
higher the chance of conducting an effective search.
If m;; is the median distance to t;; then the margin is
m;; — d(t;,q;) if the correct target given q; is in the
left subtree of n;; and the same expression in reverse
if it is in the right subtree. For convenience, define a
value v;; such that if the correct target for q; is t; as
in Section 2.2, then:

1
Vij = 1

Stating the margin in a single equation, we have:

d(tij, i) (11)

Again, we borrow the following loss formulation from
LogitBoost:

if t; € left subtree of ny;

otherwise (10)

vij (Mg —

d(tij, a:)])) (12)

Recall that d in our sequential alignment setting is
simply the sum of the costs of the events in the op-
timal alignment. Recall also from Section 2.2 that
f(a,b,x,y,a) is the number of times that character
a is replaced by b in the optimal alignment a of se-
quences x and y. Define the following shorthand:

Jij(a,b) = f(a,b,tij, qi, a45) (13)

With this definition, we can show the distance function

as:
ZZ c(a,b) fij(a,b) (14)

And finally, the loss functlon for a given query q; and
target t;; on the path to the correct leaf:

ZZ c(a,b) fij(a,b)])) (15)

The cumulative loss L over the entire training set is
then expressed as the sum of losses over each training
query. The loss for each query is in turn a sum of
the losses at each target in the path to the correct
leaf. In addition, the loss for a given target in the
path is weighted according to its depth in the tree, as
discussed earlier in this section.

log(1 + exp(vij[ms; —

137(11

log(1 4 exp(v;j[ms; —

L —
Z Z log(1 + exp(viz[mi; — 2%:(; > cla,b) fij(a,b)]))

Learning for Efficient Retrieval of Structured Data with Noisy Queries

We now perform the crucial step. The loss function
is derived with respect to the current scoring function
¢k at each pair (a,b). This gives the gradient step
Or+1(a,b):

oL
dcy(a,b)

o 72 Z exp(vij[mi; —

drt1(a,b) =

> Xy ckla’ b)) fij(a’, b))wij fij(a, b)

27 (1 4 exp(vij[mi; —

Yo 2w ck(al, b)) fij(al, 0)]))

Simplifying the above expression and substituting
Equation 14 for compactness yields our final functional
gradient expression:

v”f”(a b)
Z Z 27 (1 4 exp(vij (mi; — d(tij,q:)))

5k+1 a, b

To ensure the validity of the constructed vp-tree as
changes are made to d, we must check each node to
make sure the two child vantage points are still on
the appropriate sides of the median value. We do this
by passing a target set into the node (as in construc-
tion), and checking to make sure that the child vantage
points are in this set and on the correct side of the
median distance. If they are, we send the appropri-
ate halves of the target set to the right and left child
nodes and perform the check recursively. If not, we
must rebuild the subtree starting at the failed check.

4. Experimental Results

We do experiments in two domains, a synthetic domain
and a real-world domain. For each of these domains
we compose a set of 2000 possible targets and a corpus
of 300 queries, splitting for training and test using 10-
fold cross-validation.

For the control approach, we perform 60 iterations of
boosting using only the accuracy gradient described
in Section 2.2, then construct a vp-tree based on this
function. In the experimental approach, we perform
30 iterations of accuracy boosting before constructing
a vp-tree. We then perform 30 iterations of boosting
using a weighted sum of the accuracy gradient and
the efficiency gradient with respect to the constructed
tree, as described in Section 3.3. At each iteration of
boosting the accuracy of the function is measured, and
we assure that the triangular inequality is sufficiently
satisfied using the procedure described in Section 3.1.
The vantage points for the vp-trees are chosen by ran-
domly sampling the targets at each node and choosing
the one for which the set distances to all other targets
has the highest variance.

At the conclusion of boosting, the efficiency of both
methods is measured using a plot of error tolerance
versus the average percent of the target set that is

ignored during search. The error here is the number
of times we follow the incorrect subtree in the search,
unlike in the accuracy plots where error is simply the
incorrect retrieval rate. As we decrease 7, our searches
progress further and further down the tree, increasing
both the ignored targets and the possibility for error.
What we would like then, is for the area under this
curve to be as large as possible, so that many targets
are ignored even at low error rates.

4.1. Synthetic Domain

The first set of experiments is done in the synthetic
domain used in Parker et al. (2006) and based on
the one in (Joachims, 2003). The constants are mod-
ified slightly to make the optimal distance function
accurate at large target set sizes. The elements of the
synthetic target sequences are tuples (t1,t2) where ¢;
is an integer in the range (0,9) and ¢y is an integer
in the range (0,29). For the target set, we generate
random sequences of length 10 from this domain. The
queries are generated from random targets, beginning
at the first tuple in the selected target, according to
the following rules:

1. With probability 0.2, generate a random tuple in
the query where ¢z > 25 (an insert event).

2. Else, if to < 25, generate a match event. If the
target tuple is (¢1,t2), the matching tuple in the
query is (t1,t2 + 1 mod 30). Move to the next
tuple in the target.

3. Else, move to the next tuple in the target (a delete
event).

[

e o o
N o ©
\
\
N
N

=4
>
\

S ¢
IS
\

Fraction of Target Set Ignored
o o
w o
N
\

o
N
~

Efficiency Boosting
— — — Accuracy Boosting

o
e
N

o

0.4 0.6 0.8 1
Error Tolerance

o
oL
o

Figure 2. Efficiency in the synthetic domain.

Figure 2 shows the retrieval curves for the synthetic
domain. As we can see, the efficiency-boosted distance
function has far better retrieval performance than
the distance function created with accuracy boosting
alone, pruning up to 30% more of the target set during

Learning for Efficient Retrieval of Structured Data with Noisy Queries

Efficiency Boosting
— — — Accuracy Boosting

30 40 50 60
Iteration

Figure 3. Error rate in the synthetic domain as the distance
function is boosted.

search. In Figure 3 we see that, as the distance func-
tion evolves over the boosting iterations, the accuracy
of the efficiency boosted distance function only falters
for a moment when efficiency boosting begins (at iter-
ation 30) but returns to within a fraction of a percent
of the error of the accuracy boosted function.

4.2. Query-by-humming Domain

The second set of experiments is done in the so-called
“query-by-humming” domain (Meek, 2004; Dannen-
berg et al., 2003; Pardo et al., 2004). In this domain,
the query is an audio file of a person singing or playing
a song. The target songs are represented as a database
of sequences of notes.

Before use in retrieval, the query must be transcribed
to extract a sequence of notes from the raw audio.
For a detailed discussion of the transcription process,
see Meek (2004). When transcription is complete, the
events in the query sequence are represented as a series
of tuples, containing a component for the average pitch
and the duration of each event, so a query sequence s
is of the form:

5= {(511)7 S(li)v (512)7 Sg)v SRR (S;|Ds|7 S|ds|)}

Furthermore, the pitch and duration of the starting
event is immaterial as long as the proper relative
pitches and durations are maintained. Thus, we in-
stead represent the song using pitch differences and
duration ratios:

[é 1
8= {(Sla Sq)v (527 55)’ T (S|s|7 STS‘)}

Sit1
-
Si

6 _ P p T
where s = 57| — s; and s} =

These real-valued tuples are binned to give a finite
alphabet. Experiments in the literature (Carré et al.,
2001; Pardo & Birmingham, 2002) suggest 27 bins for
pitch interval and 4 for duration ratio.

The query corpus is a set of roughly 300 queries given
by 50 singers on 12 query songs. The training align-
ments are created using the function given in (Dannen-
berg et al., 2003). The target set is composed of songs
from from the Digital Tradition folk song database.

Fraction of Target Set Ignored

01t Efficiency Boosting | |
— — — Accuracy Boosting

0 0.2 0.4 0.6 0.8 1
Error Tolerance

Figure 4. Efficiency in the query-by-humming domain.

0.7

Efficiency Boosting
0.6 — — — Accuracy Boosting | 4

Error

Iteration

Figure 5. Error rate in the query-by-humming domain as
the distance function is boosted.

Figure 4, shows retrieval performance in the query-by-
humming domain. Even though the accuracy boosted
distance function is already quite efficient, efficiency
boosting still gives a 10-20% efficiency increase. Figure
5 again shows an only slight increase in error of about
1-2%.

5. Conclusions and Future Work

We have shown that, using gradient boosting, a dis-
tance function in the sequence matching domain can
be modified to increase the effectiveness of a metric
access method. We have also shown empirically that
the gain in efficiency need have little impact on the
accuracy of the function. To the best of our knowl-
edge, there have been no attempts in the literature at
learning a distance metric specific to an MAM. With
these results, we hope that our method can be a point
for comparison for future work in this new area.

Learning for Efficient Retrieval of Structured Data with Noisy Queries

The obvious direction for this work is expanding it to
other MAMs and structure types. To be amenable
to these methods, the distance function must be in
some sense decomposable, so that the gradient can
push parts of it in the proper direction, as is done
with the replacement values ¢(a,b) in these domains.

In order for this work to be applicable to other MAMs,
the MAM must be robust to changes in d. A benefit
of using vp-trees is that the structure need only be
rebuilt where it is invalid after a change to d. In the
course of this work, we also derived a gradient expres-
sion for cover trees (Beygelzimer et al., 2006), only to
find that even small changes to d required rebuilding
of the entire tree, thus invalidating previous gradient
steps. We also derived a gradient expression for m-
trees (Hjaltason & Samet, 2003) which do not require
any rebuilding as d changes. Preliminary results with
this structure are encouraging.

We note that the efficiency improvements in these do-
mains are somewhat modest. We have early exper-
imental indications that the method will offer even
greater improvement on larger datasets, especially
those for which the space of possible structures is
nearly exhausted in the target set. In these cases,
when the efficiency gradient is calculated with com-
plete knowledge of the space of possible structures, we
are able to more accurately tune the distance function
and achieve better performance.

Finally, it is reasonably easy to extend another dis-
criminative training method, SVM-align (Joachims,
2003), to do what we have done here. Because SVM-
align is essentially a constraint optimization method,
one can imagine a formalism in which constraints are
added for each node in the path of a query, and the
learned distance function is an attempt to optimize
over these constraints.

Acknowledgments

The authors gratefully acknowledge the support of
the Defense Advanced Research Projects Agency un-
der DARPA contract FA8650-06-C-7605 and thank the
anonymous reviewers for their comments.

References

Beygelzimer, A., Kakade, S., & Langford, J. (2006). Cover
trees for nearest neighbor. ICML ’06: Proceedings of the
28rd international conference on Machine learning (pp.
97-104). Pittsburgh, Pennsylvania.

Carré, M., Philippe, P., & Apélian, C. (2001). New query-
by-humming music retrieval system conception and eval-
uation based on a query nature study. Proc. COST G-6

Conference on Digital Audio Effects. Limerick, Ireland.

Dannenberg, R. B., Birmingham, W. P., Tzanetakis, G.,
Meek, C., Hu, N., & Pardo, B. (2003). The musart
testbed for query-by-humming evaluation. Proc. 4th In-
ternational Symposium on Music Information Retrieval.

Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack,
W., Petkovic, D., & Equitz, W. (1994). Efficient and ef-
fective querying by image content. Journal of Intelligent
Information Systems, 8, 231-262.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive
logistic regression: a statistical view of boosting. Annals
of Statistics, 28, 337-407.

Ghias, A., Logan, J., Chamberlin, D.; & Smith, B. C.
(1995). Query by humming: Music information retrieval
in an audio database. Proc. 3rd ACM Multimedia Con-
ference (pp. 231-236).

Hjaltason, G. R., & Samet, H. (2003). Index-driven sim-
ilarity search in metric spaces (survey article). ACM
Transactions on Database Systems, 28, 517-580.

Joachims, T. (2003). Learning to align sequences, a mazi-
mum margin approach (Technical Report). Cornell Uni-
versity.

Krogh, A., Brown, M., Mian, I. S., Sjolander, K., & Haus-
sler, D. (1994). Hidden Markov models in computational
biology: Applications to protein modeling. Journal of
Molecular Biology, 235, 1501-1531.

Meek, C. (2004). Modelling error in query-by-humming
applications. Doctoral dissertation, The University of
Michigan.

Pardo, B., & Birmingham, W. (2002). Encoding timing
information for musical query matching. Proc. 8rd In-
ternational Symposium on Music Information Retrieval.

Pardo, B., Birmingham, W., & Shifrin, J. (2004). Name
that tune: A pilot study in finding a melody from a sung
query. Journal of the American Society for Information
Science and Technology, 55.

Parker, C., Fern, A., & Tadepalli, P. (2006). Gradient
boosting for sequence alignment. The Twenty-First Na-
tional Conference on Artificial Intelligence (AAAI-06).
Boston, MA.

Skopal, T. (2006). On fast non-metric similarity search by
metric access methods. Proc. 10th International Con-
ference on Extending Database Technology (EDBT *06)
(pp. 718-736).

Smith, M. S., & Waterman, T. F. (1981). Identification of
common molecular subsequence. Journal of Molecular
Biology, 147, 195-197.

Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun,
Y. (2004). Support vector machine learning for interde-
pendent and structured output spaces. Proc. 21st Inter-
national Conference on Machine Learning.

Weber, R., Schek, H.-J., & Blott, S. (1998). A quan-
titative analysis and performance study for similarity-
search methods in high-dimensional spaces. Proc. 24th
Int. Conf. Very Large Data Bases, VLDB (pp. 194-205).

