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Abstract

Feature extraction is important in many ap-
plications, such as text and image retrieval,
because of high dimensionality. Uncorrelated
Linear Discriminant Analysis (ULDA) was
recently proposed for feature extraction. The
extracted features via ULDA were shown to
be statistically uncorrelated, which is desir-
able for many applications. In this paper, we
will first propose the ULDA/QR algorithm
to simplify the previous implementation of
ULDA. Then we propose the ULDA/GSVD
algorithm, based on a novel optimization cri-
terion, to address the singularity problem.
It is applicable for undersampled problem,
where the data dimension is much larger
than the data size, such as text and im-
age retrieval. The novel criterion used in
ULDA/GSVD is the perturbed version of the
one from ULDA/QR, while surprisingly, the
solution to ULDA/GSVD is shown to be in-
dependent of the amount of perturbation ap-
plied. We did extensive experiments on text
and face image data to show the effectiveness
of ULDA/GSVD and compare with other
popular feature extraction algorithms.

1. Introduction

Feature extraction is important for many applica-
tions, such as text and image retrieval, because of the
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so-called curse of dimensionality (Fukunaga, 1990).
Many methods have been proposed for feature extrac-
tion, such as Principal Component Analysis (PCA)
(Jolliffe, 1986), Linear Discriminant Analysis (LDA)
(Fukunaga, 1990), etc. LDA aims to find optimal
discriminant features by maximizing the ratio of the
between-class distance to the within-class distance of
a given data set under supervised learning conditions.
Its simplest implementation, so-called classical LDA,
applies an eigen-decomposition on the scatter matri-
ces, and fails when the scatter matrices are singular,
as is the case for undersampled data. This is known
as the singularity problem or undersampled problem.
Many schemes have been proposed to address the sin-
gularity problem in classical LDA, such as regular-
ized LDA (Friedman, 1989), subspace LDA (Swets &
Weng, 1996), etc.

Uncorrelated features', are desirable in many appli-
cations, because they contain minimum redundancy.
Motivated by extracting feature vectors having uncor-
related attributes, uncorrelated LDA (ULDA), was re-
cently proposed in (Jin et al., 2001a; Jin et al., 2001b).
However, the proposed algorithm in (Jin et al., 2001a)
involves d generalized eigenvalue problems, if there ex-
ist d optimal discriminant vectors. It is computation-
ally expensive for large and high-dimensional dataset.
Like classical LDA, it does not address the singularity
problem either. We thus call it classical ULDA. More
details can be found in Section 3.

Classical LDA and classical ULDA were introduced
from different perspectives. But it has been found
that there is an intrinsic relationship between classical

ITwo variable z and y are said to be uncorrelated, if
their covariance is zero, i.e., cov(z,y) =0



LDA and classical ULDA (Jin et al., 2001b). More pre-
cisely, under the assumption that the eigenvalue prob-
lem in classical LDA has no multiple eigenvalues, (Jin
et al., 2001b) showed that classical ULDA is equivalent
to classical LDA. In this paper, we will further show
that the equivalence between these two is still held
without any assumption. Based on this equivalence,
ULDA/QR is proposed to simplify the ULDA imple-
mentation in (Jin et al., 2001a), where ULDA/QR
stands for ULDA based on QR-decomposition.

Classical LDA and classical ULDA do not address the
singularity problem, hence it is difficult to apply them
to undersampled data. Such high-dimensional, under-
sampled problems frequently occur in many applica-
tions including information retrieval (Howland et al.,
2003), face recognition (Swets & Weng, 1996) and
microarray analysis (Dudoit et al., 2002). Several
schemes have been proposed to address the singular-
ity problem in classical LDA in the past, including the
subspace based method (Swets & Weng, 1996), regu-
larization (Friedman, 1989), etc. The subspace-based
method applies the Karhunen-Loeve (KL) expansion,
also known as Principal Component Analysis (PCA)
(Jolliffe, 1986), before LDA. Its limitation is that some
useful information may be lost in the KL expansion.
Regularized LDA overcomes the singularity problem
by increasing the magnitude of the diagonal elements
of the scatter matrices (usually by adding a scaled
identity matrix). The difficulty in using regularized
LDA for feature extraction is the choice of the amount
of perturbation. A small perturbation is desirable to
preserve the original matrix structure, while a large
perturbation is more effective in dealing with the sin-
gularity problem.

There is much less work in addressing the singular-
ity problem in classical ULDA than those on classi-
cal LDA. To the best of our knowledge, (Jin et al.,
2001a) is the only result known, where a subspace
based method was applied (PCA is applied to the
between-class scatter matrix). The algorithm is named
subspace ULDA.

We address the singularity problem of ULDA, in the
second part of this paper, by introducing a novel op-
timization criterion that combines the key ingredients
of ULDA/QR . and regularized LDA. More specifically,
the novel criterion is the perturbed version of the cri-
terion used in ULDA/QR. Based on this criterion,
in addition to Generalized Singular Value Decompo-
sition (GSVD) tool (Golub & Van Loan, 1996), we
propose a novel feature extraction algorithm, called
ULDA/GSVD, where ULDA/GSVD stands for ULDA
based on GSVD. ULDA/GSVD solves the singular-

ity problem directly, thus avoiding the information
loss in the subspace method. The difference between
ULDA/GSVD and the traditional regularized LDA
is that the optimal discriminant feature vectors via
ULDA/GSVD are independent of the amount of per-
turbation (a quite surprising but firmly provable re-
sult), thus avoiding the limitation in regularized LDA.
The details are given in Section 5.

With K-Nearest-Neighbor (K-NN) as classifier, we
evaluate the effectiveness of ULDA/GSVD and com-
pare with several other popular feature extraction
algorithms, including OCM (Orthogonal Centroid
Method) (Park et al., 2003), PCA (Jolliffe, 1986), and
subspace ULDA (Jin et al., 2001a), on text and face
image datasets. We observe that the accuracies on
text datasets achieved by ULDA/GSVD are usually
distinctly higher than all other tested algorithms. The
result on face image datasets is also appealing. Even
though the subspace ULDA is found to be quite com-
petitive to ULDA /GSVD via 1-NN classifier, the latter
one shows its extreme stability to different numbers of
nearest neighbors in K-NN.

The rest of the paper is organized as follows: Sections
2 and 3 give brief reviews on classical LDA and clas-
sical ULDA respectively. Sections 4 and 5 propose
the ULDA/QR and ULDA/GSVD algorithms, respec-
tively. Experiments are presented in Section 6. We
conclude in Section 7.

2. Classical Linear Discriminant
Analysis

For convenience, Table 1 lists the important notations
used in this paper.

Table 1. Notations

Notations | Descriptions

A data matrix

n number of training data points
N dimension of the training data
l reduced dimension

k number of the classes

S between-class scatter matrix
Sw within-class scatter matrix

St total scatter matrix

transformation matrix

covariance matrix of the i-th class
mean of data from the i-th class

a priori probability of the i-th class
total mean of the training data
number of nearest neighbors in K-NN

0
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Given a data matrix A = (a;;) € RN*", where each
column corresponds to a data point and each row cor-
responds to a particular feature, we consider finding
a linear transformation G € RN*! (¢ < N) that
maps each column a;, for 1 < i < n, of A in the N-
dimensional space to a vector y; in the /-dimensional
space as follows: G : a; € RV — y; = GTa; € RL.
The resulting data matrix Z = GTA € R**™ contains
{ rows, i.e. there are ¢ features for each data point in
the reduced (transformed) space. It is also clear that
the features in the reduced space are linear combina-
tions of the features in the original high dimensional
space, where the coefficients of the linear combinations
depend on the transformation matrix G.

A common way to compute the transformation matrix
G is through classical LDA. Classical LDA computes
the optimal G such that the class structure is pre-
served. More details are given below.

Assume there are k classes in the dataset. Suppose m;,
S;, P; are the mean vector, covariance matrix, and a
priori probability of the i-th class, respectively, and
m is the total mean. Then the between-class scatter
matrix Sy, the within-class scatter matrix S,,, and the
total scatter matrix S; are defined as follows (Fuku-
naga, 1990):

k
Sw = ZPLS'L,
i=1
k
Sy = ZPi(mi —m)(m; —m)T,
=1
St = Sp+ Su.

For the covariance matrix S; of the ith class, we can
decompose it as S; = XiXiT , where each column in
X; corresponds to a data point from the ith class sub-

tracted by its mean m;.

Define the matrices

Hy, = [VPiX1, - ,/PcXsl, (1)
Hy = [yPi(mi—m),- -, /Pe(mg—m)]. (2)

Then the scatter matrices S,, and S can be ex-
pressed as S, = H,HL, S, = HyH]. The traces
of the two scatter matrices can be computed as fol-
lows: trace (Sy) = Yo, Bi||Xi||%, and trace (S;) =
S ¥ | Pi|lmi — m||?, where || - || denotes the Frobe-
nius norm (Golub & Van Loan, 1996). Hence,
trace (S,,) measures the closeness of the vectors within
classes, while trace (Sp) measures the separation be-
tween classes.

In the lower-dimensional space resulting from the lin-
ear transformation G, the within-class and between-

class matrices become

Sh =
Sy =

(GTH,)(GTH,)T =G"S,G,
(GTHy)(GTHy)™ = GT S, G.

An optimal transformation G would maximize
trace (S)) and minimize trace (S%). Classical LDA
aims to compute the optimal G, such that

-1
G = argmaxtrace ((G7S,G) " GTS,G).  (3)

The solution can be obtained by solving an eigen-
value problem on S;'S, (Fukunaga, 1990), provided
that the within-class scatter matrix S,, is nonsingular.
Since the rank of the between-class scatter matrix is
bounded from above by k — 1, there are at most k — 1
discriminant vectors by classical LDA.

Classical LDA does not handle singular scatter ma-
trices, which limits its applicability to undersampled
problems. Several methods, including subspace LDA
(Swets & Weng, 1996), and regularized LDA (Fried-
man, 1989), were proposed in the past to deal with
the singularity problem.

In subspace LDA, an intermediate dimension reduc-
tion algorithm, such as PCA, is applied to reduce the
dimension of the original data, before classical LDA
is applied. A limitation of this approach is that the
optimal value of the reduced dimension for the inter-
mediate dimension reduction algorithm is difficult to
determine. In regularized LDA, a constant u is added
to the diagonal elements of S,,, as Sy, + ply, for some
p > 0, where Iy is an identity matrix. It is easy to
check that Sy, + uln is positive definite, hence nonsin-
gular. A limitation of this approach is that the optimal
value of the parameter p is difficult to determine. More
details can be found in (Krzanowski et al., 1995).

3. Uncorrelated Linear Discriminant
Analysis

ULDA aims to find the optimal discriminant vectors
that are S;-orthogonal?. Specifically, suppose r vectors
1,02, , ¢, are obtained, then the (r + 1)th vector
¢r41 is the one that maximizes the Fisher criterion

function f(¢) = (fTTSS:Z), subject to the constraints:
¢Z1+15t¢i = 07 (Z = 17 T 7T)‘

The algorithm in (Jin et al., 2001a) finds ¢; succes-
sively as follows: The j-th discriminant vector ¢; of
ULDA is the eigenvector corresponding to the max-
imum eigenvalue of the following generalized eigen-
value problem: U;Sy¢; = A;jSyPj, where Uy = Iy,

2Two vectors z and y are Siz-orthogonal, if 7Sy = 0.



U — Iy — 8,DT(D;5,551S,DT)"1D;8,S5'(j > 1),
= 1, ,¢;-1]7(j > 1), and Iy is the identity
matrix.

It was shown that the feature vectors transformed by
ULDA are mutually uncorrelated. This is a desirable
property for feature extraction. More details on the
role of uncorrelated attributes can be found in (Jin
et al., 2001a). The limitation of the ULDA algorithm
in (Jin et al., 2001a) lies in the expensive computation
of the d generalized eigenvalue problems, where d is
number of optimal discriminant vectors by ULDA.

4. The ULDA/QR algorithm

In this section, we show the equivalence between clas-
sical ULDA and a variant of classical LDA, regardless
of the distribution of the eigenvalues of S;;*S,. This
result enhances the one in (Jin et al., 2001b) where the
equivalence between these two is based on the assump-
tion that there are no multiple eigenvalues for S1S;
(note that both results assume that the within-class
scatter matrix Sy, is nonsingular). Based on the equiv-
alence, we propose ULDA/QR to simplify the ULDA
implementation in (Jin et al., 2001a).

Consider a variant of classical LDA in Eq. (3) as fol-
lows:

F(G), (4)

G =arg min
GTS:G=I,

where F(G) = trace ((G75,G) ™' GTS,G).

From linear algebra, there exists a nonsingular matrix
X such that

XTS,X = Iy, (5)
XTSbX = A:diag()\l,--- ,)\N), (6)
where A; > --- > An. An efficient algorithm to com-

pute the matrix X will be given later in this section.
It can be shown that the matrix consisting of the first
g columns of X (with normalization) solves the opti-
mization problem in Eq. (4), where ¢ is the rank of the
matrix Sp, as stated in the following theorem:

Theorem 4.1. Let the matrix X be defined as in

Eq. (5) and Eq. (6), and ¢ = rank(Sy). Let G* =
[Z1,---,&q], where Z; = ﬁ%, z; is the i-th col-

umn of the matriz X, and \;’s are defined in Eq. (6).
Then G* solves the optimization problem in Eq. (4).

Proof. Tt is clear that the constraint in Eq. (4) is sat-
isfied for G = G*. Next we only need to show that the
minimum of F(G) is obtained at G*. By Eq. (5) and

Eq. (6), we have

GTS,G=GTX T(XTS8, X)X 'G =GGT,
GTS$G =GTX T (XT8X)X G = GAGT,
where G = (X_IG)T. Hence, F(G) =

trace ((ééT)_l (éAéT)> Let GT = QR be the

QR-decomposition of GT € R¥*¢ (note that GT has
full column rank), where Q € RV*¢ has orthonormal
columns and R is nonsingular. Using the fact that
trace(AB) = trace(BA), for any matrices A and B,
we have

F(G) = trace ((RTR)71 (RTQTAQR))

= trace (QTAQ) < A+ + Ag,

where the inequality becomes equality for

Qz(%)oerX({f)R,

when the reduced dimension ¢ = ¢q. Note that R is
an arbitrary upper triangular and nonsingular matrix.
Hence, G* corresponds to the case when R is set to be

N 1 1
R—dlag( Ao /—1+/\q>- O

We are now ready to present our main result for this
section:

Theorem 4.2. Let Z;’s be defined as in Theorem 4.1.
Then {Z;}]_, forms an optimal discriminant vectors
for ULDA, where q = rank(Sp).

Proof. Proof by induction. It is trivial to check that
Z, = argmaxy f(¢), i.e. ¢1 = Z;. Next assume ¢; =
Z;, for ¢ = 1,--- ,r. We show in the following that
¢1‘+1 = i‘r—}—l-

By the definition, ¢,41 = argmaxy f(¢), subject to
¢7T+lst¢i =0, for i = 1,---,r. Let ¢r+1 = Zfil Vi,
since {%;}¥, forms a base for RV . By the constraints
oL 1S = 0, for i = 1,--+ ,r, we have v; = 0, for
i =1,---,7, hence ¢p11 = Zﬁirﬂ ~v:Z;. It follows
from Eq. (5) and Eq. (6) that

( i=r+1 ’71 ) ( i=r+1 71:1:1)
f(¢'r‘+1) =
( i=r+1 ’y‘ ) ( i=r4+1 71:1:1)
N
_ Z'L =r+1 Yi )\ < Zz =r+1 Vi )‘7‘—1—1
va r+1 ’YZ a Z i=r+1 ’YZ
= )‘7‘+1;



Algorithm 1: The ULDA/QR Algorithm
Input: Data matrix A.
Output: Discriminant vectors Z;’s of ULDA.
1. Construct matrices H,, and Hp as in

Eq. (1) and Eq. (2).
2. Compute QR-decomposition on HI as

HT = QR, where Q € R"*N, R € RV*V,

. Form the matrix Y + HER_I.
4. Compute SVD on Y as Y = UXVT, where

U € R"*4, ¥ = diag(oy,--- ,04) € R1*Y,

V € RNX4 g > ... > 0,, and q = rank(Hj).
5. [z1,-++ ,24] «+ RV,
Aot fori=1,---,q.

~ 1 .
7. iBi(—ﬁ.'Ei,fOI"L:].,"',q.

w

(=2}

where the inequality becomes equality if v; = 0, for

t=r+2,---,N. Hence &,;,1 can be chosen as the
(r 4+ 1)-th discriminant vector of ULDA, i.e. ¢pt1 =
Tpiy1- O

An efficient algorithm for computing {Z;}_, through
QR-decomposition is given in Algorithm 1.

5. The ULDA /GSVD algorithm

In the last section, a variant of classical LDA is pre-
sented in Eq. (4). It was shown that the solution
to the optimization problem in Eq. (4) forms opti-
mal discriminant vectors for classical ULDA. Thus,
it provides an efficient way to compute optimal dis-
criminant vectors for ULDA. However, the algorithm
assumes the non-singularity of S,,, which limits its ap-
plicability to applications involving high-dimensional
data. In (Jin et al., 2001a), a subspace based method
is presented to solve the singularity problem, where
the ULDA algorithm is preceded by PCA. However,
the PCA stage may lose some useful information. In
this section, we propose a new feature extraction al-
gorithm, called ULDA/GSVD. The new criterion un-
derlying ULDA /GSVD is motivated by the criterion in
Eq. (4) and the perturbation in regularized LDA. The
new optimization problem for ULDA /GSVD is defined
as follows,

G, =arg max
w GTS,C=I,

where F,(G) = trace ((GTSwG + pul;) 'GTS,G).

Recall that a limitation of regularized LDA is that
the optimal value of the perturbation p is difficult to
determine. A key difference between ULDA/GSVD
and regularized LDA is that the optimal solution to
ULDA/GSVD is independent of the perturbation ap-
plied, i.e., G,, = G,,, for any pi,p2 > 0. The main

Fu(G), (7)

technique applied here for computing G, for for any
p > 0, is the Generalized Singular Value Decomposi-
tion (GSVD). A simple algorithm to compute GSVD
can be found in (Howland et al., 2003), where the al-
gorithm is based on (Paige & Saunders, 1981).

We need the following two lemmas to compute G, for
any p > 0.

Lemma 5.1. Let Sy, Sy, and S; be defined as in Sec-
tion 2, and t = rank(S;). Then there ezists a nonsin-
gular matriz X € RV*N | such that

XTSbX =D; = diag(a?"" ,CM?,O"' ’O)a

,B7,0-+,0),
>ag>0=ag4 = -
OSﬂls---s5ts1,D1+D2=(§ 8) and
q = rank(Sp).

XT8,X = Dy = diag(B3,---

where 1 > oy > --- = oy,

Hy
H,
trix. By the generalized singular value decomposition
(Paige & Saunders, 1981), there exist orthogonal ma-
trices U € RF*k, V € R™*™, and a nonsingular matrix
X € RV*VN | such that

Proof. Let K = ], which is an (n+ k) X N ma-

T
U 0 [=0
ICREDEE
where YT%;, = diag(a?,---,a?), XI%, =
dlag(ﬂ%aaﬂ?)a 1 Z a1 2 Z Qq > 0 =
dgp1=-=04, 0< B < < B <1, 07 + B2 =1,
fori=1,---,t, and q = rank(Hp) = rank(Sp).
Hence, HfX = U[%; 0], and HIX

V[ Yo 0 ] It follows that

T
XTSX = XTH,HI X = [ 021 1 8 ] = Dy,
T T T T8 0
XxTs,X = XTH,HYX = 02 O]ZDQ,
I, 0
whereD1+D2:(0t 0). 0

Lemma 5.2. Define a trace optimization problem as
follows:

G = arg max_trace ((GTWG)_1 GTBG) , (9
GTG=I,

where W = diag(w1,--- ,wy,) € R"*™ is a diago-

nal matriz with 0 < w; < --- < wy, and B =

diag(by,--- ,b,) € R**" is also diagonal with by >

v >bg >0 = bgy1 = -+ = by, t.e. rank(B) = gq.



Then G* = I(;”

in Eq. (9) with £ =q.

solves the optimization problem

Proof. Tt is clear that the constraint in the optimiza-
tion in Eq. (9) is satisfied for G* with £ = ¢. Next, we
show that G* solves the following optimization prob-
lem:

-1
G = arg max trace ((GTWG) GTBG) . (10

The optimization in Eq. (10) corresponds to the trace
optimization problem in classical LDA in Eq. (3) with
the within-class scatter matrix S,, = W and between-
class scatter matrix S, = B. Since the within-class
scatter matrix S,, = W is nonsingular, the solution
can be obtained by solving the eigenvalue problem
on W—1B. It is easy to check that W—!B is diago-
nal and only the first ¢ diagonal entries are nonzero.
Hence e;, for i = 1,--- , g, is the eigenvector of W~1B
corresponding to the i-th largest eigenvalue, where
e; = (0,---,1,0--- ,O)T and the 1 appears at the i-
th position. Therefore G* solves the optimization in
Eq. (10). O

The main result is stated in the following theorem:

Theorem 5.1. Let the matriz X be defined as in
Lemma 5.1, and let ¢ = rank(Sp). Then G, =

0
with £ = q.

X ( I ) solves the optimization problem in Eq. (7)

Proof. By Lemma 5.1, XTS,X = Dy, XTS,X = Ds,
where the two diagonal matrices D; and D» satisfy

Dy + Dy = ( ét 8 ) It is easy to check that
* * 1
(G)TSGr = (I5,0) XT(Sy + Sw) X < N >

— w0 @+0) () =1

i.e. the constraint in the optimization problem in
Eq. (7) is satisfied. Next we show G, minimizes F),(G).

Since
GTSG =GT (X HT(XT8X)X'G = GD,G7,
GTS,G =GT (X HT(XTS, X)X 1G = GD,GT,

where G = (X~'G)7, F,,(G) can then be rewritten as,

~ ~ -1 . ~
F,(G) = trace <(GD2GT + pIg) GDlGT) . (11)

Algorithm 2: The ULDA/GSVD Algorithm

Input: Data matrix A

Output: Optimal discriminant vectors {¢;}

1. Form H, and H,, as in Eq. (2) and Eq. (1).

2. Compute GSVD on the matrix pair (Hf, HT)
to obtain the matrix X, as in Lemma 5.1.

3. q + rank(Hp).

4. ¢; + X;, fori=1,--- ,q.

Let G = ( GT G% ) be a partition of G, such that
GT € R, GT ¢ RN,

By the constraint that GT S;G = I,, we have

I, = GT8,G=G"(Sy+Sy)G=G"SG +G"S,G
= éDlé'T + éDQéT = G(Dl + DQ)GT = G’{Gl

Hence, F,(G) in Eq. (11) can be rewritten as
F,(G) = trace ((G{’ (DL + pulp) Gy) ™" GlTD§G1> .

where D} and D} are the t-th principal sub-matrices
of Dy and D, respectively. It is clear that F,(G)
is independent of G;. Hence we can simplify set
G2 = 0. Denote ¥ = (D% + ul;), which is a non-
singular and diagonal matrix. It follows that F),(G) =

trace ((G{EGl) - GfDiGH) . The result then follows
from Lemma 5.2, with W =¥ and B = Dj. O

It is clear from Theorem 5.1 that the optimal solution
G}, to the optimization in Eq. (7) only depends on
X, which is determined by H,, and Hj, hence it is
independent of u, as stated in the following theorem:

Theorem 5.2. Let G}, for p > 0, be as in Theo-
rem 5.1. Then G, = G,,,, for any p1,p2 > 0.

The main algorithm is presented in Algorithm 2.

Remark 5.1. Theorem 5.2 implies that the choice of
w in Eq. (7) is irrelevant for practical implementation
(see Algorithm 2). However, it leads to the theoreti-
cal derivation of ULDA/GSVD. The complezity of the
Algorithm 2 can be shown to be O(n?N).

6. Experiments

This section consists of two parts. The first part de-
scribes our test datasets. The second part compares
our ULDA/GSVD algorithm with PCA, OCM, and
subspace ULDA, in terms of classification accuracy.
The K-Nearest-Neighbor (K-NN) algorithm was used
as our classifier. In each test, a dataset is randomly
partitioned into training and testing sets with equal



sizes. The final classification accuracy reported is the
average over 10 different partitions.

Note that ULDA /QR does not apply for undersampled
data, which is the case for all the datasets in this pa-

per. However, when the scatter matrix is non-singular,
ULDA/GSVD is equivalent to ULDA/QR.

6.1. Datasets

We have three text document datasets Docl-3
and three face image datasets Imgl-3 as follows:
Docl is derived from the TREC-5, TREC-6, and
TREC-T7 collections, available at http://trec.nist.gov;
Doc2 and Doc3 are derived from Reuters-21578
text categorization test collection Distribution 1.0,
available at http://www.research.att.com/~lewis;
Imgl is the ORL face image dataset available at
http://www.uk.research.att.com/facedatabase.html;

Img2 is the PIX face image dataset available at
http://peipa.essex.ac.uk/ipa/pix/faces/manchester;

Img3 is the AR face image dataset available at

http://rvll.ecn.purdue.edu/~aleix/aleix_face_DB.html.

For text documents, we use a stop-list to remove
common words, and the words are stemmed using
Porter’s suffix-stripping algorithm (Porter, 1980).
Table 2 summarizes the statistics of our test datasets.

6.2. Results and analysis

The accuracy curves of four feature extraction al-
gorithms: OCM, PCA3, subspace ULDA“, and
ULDA/GSVD, on the six datasets are shown in Fig. 1.
The horizontal axis represents the number of nearest
neighbors in K-NN algorithm, and the vertical axis
represents the classification accuracy/precision.

For the text data, the superiority of ULDA/GSVD
over the other three feature extraction algorithms can
be easily observed via different K-NNs. The subspace
method and OCM are comparable to each other.

As for the images, ULDA/GSVD again outperforms
other algorithms. Unlike the behaviors on text
data, subspace ULDA becomes quite competitive to
ULDA/GSVD and PCA is also quite competitive ex-
cept on the AR dataset. This is especially true when
K = 1 nearest neighbor is used in K-NN. Note that
the poor performance of OCM and PCA on the AR
dataset is probably due to large within-class varia-
tion in the AR dataset. Unlike subspace ULDA and

3Extensive experiments showed that using p = 100 prin-
cipal components in PCA gave good overall results.

“Extensive experiments showed that using p = 200 prin-
cipal components in the PCA stage of subspace ULDA gave
good overall results.

Table 2. Statistics for the test datasets

Dataset | Source Size | Dim | # of classes
Docl TREC 210 | 7454 7
Doc2 Reuters | 320 | 2887 4
Doc3 Reuters | 490 | 3759 5
Imgl ORL 400 | 10304 40
Img?2 PIX 300 | 10000 30
Img3 AR 1638 | 8888 126

ULDA/GSVD, both PCA and OCM omit the within-
class information. Another major observation is the
stability of ULDA/GSVD to the number of nearest
neighbors. Recall that ULDA/GSVD minimizes the
within-class distance and maximizes the between-class
distance simultaneously with maximum discrimina-
tion. Thus, the performance of K-NN algorithm on
the reduced space by ULDA/GSVD is expected to be
insensitive to the number of neighbors (K).

7. Conclusion

Uncorrelated attributes with minimum redundancy
are highly desirable in feature extraction for many ap-
plications such as text retrieval, image retrieval, etc.
In this paper, we presented a study on uncorrelated
Linear Discriminant Analysis (ULDA). This study
contains two major contributions. The first one is the
theoretical result on the equivalence between classi-
cal ULDA and classical LDA, which leads to a fast
implementation, ULDA/QR, of ULDA. Then we pro-
pose ULDA/GSVD, based on a novel optimization cri-
terion, that can successfully overcome the singularity
problem in classical ULDA. The novel criterion used
in ULDA/GSVD is the perturbed version of the one
from ULDA/QR, while the solution to ULDA/GSVD
is shown to be independent of the amount of pertur-
bation applied, thus avoiding the limitation in regu-
larized LDA. The experiments on text and face image
data show the superiority of ULDA/GSVD over other
competing algorithms including PCA, OCM, and sub-
space ULDA.
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