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Abstract

We consider the problem of computing low
rank approximations of matrices. The nov-
elty of our approach is that the low rank ap-
proximations are on a sequence of matrices.
Unlike the problem of low rank approxima-
tions of a single matrix, which was well stud-
ied in the past, the proposed algorithm in
this paper does not admit a closed form so-
lution in general. We did extensive exper-
iments on face image data to evaluate the
effectiveness of the proposed algorithm and
compare the computed low rank approxima-
tions with those obtained from traditional
Singular Value Decomposition based method.

keywords: Singular Value Decomposition (SVD), low
rank approximation, classification.

1. Introduction

The language of linear algebra appeared quite early in
information retrieval, and machine learning, through
the use of wvector space model (Kleinberg & Tomkins,
1999). Under this model, each datum is modeled as a
vector and the collection of data is modeled as a single
data matrix, where each column of the data matrix
corresponds to a data point and each row of the data
matrix corresponds to a feature dimension. The repre-
sentation of data by vectors in Euclidean space allows
one to compute the similarity between data points,
based on the Euclidean distance or some other simi-
larity metrics. The similarity metrics on data points
naturally lead to similarity based indexing by repre-
senting queries as vectors and searching for their near-
est neighbors. However, in many applications, such
as images, the nearest neighbor searching is in a huge
number of dimensions. Because of the curse of the
dimensionality, that is, the query efficiency and accu-
racy degrades as the dimensionality increases, dimen-
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sion reduction becomes an important pre-processing

step (Aggarwal, 2001; Castelli et al., 2003).

A well-known technique for dimension reduction is the
low rank approximation by the Singular Value Decom-
position (SVD) (Golub & Van Loan, 1996). Let A be
the data matrix, and let A = ULV7T be the SVD of
A, where U and V are orthogonal and ¥ is diagonal.
Then, for a given k, the optimal rank k£ approxima-
tion of A is given by besty(A) = UkEkaT, where Uy,
and Vj are the matrices formed by the first & columns
of the matrices U and V, respectively, and X is the
k-th principal submatrix of 3. A key property of this
rank k approximation is that it achieves the best possi-
ble approximation with respect to the Frobenius norm,
among all matrices with rank k. More details can be
found in Section 2.

The problem of low rank approximations of matrices
has recently received broad attention in areas such as
computer vision, information retrieval, and machine
learning (Berry et al., 1995; Castelli et al., 2003; Deer-
wester et al., 1990; Dhillon & Modha, 2001; Srebro
& Jaakkola, 2003). It becomes an important tool
for extracting correlations and removing noise from
data. However, applications of this technique to high-
dimensional data, such as images and videos, quickly
run up against practical computational limits, mainly
due to the high time and space complexities of the
SVD computation for large matrices. Several incre-
mental algorithms have been proposed in the past (Gu
& Eisenstat, 1993; Kanth et al., 1998) to deal with the
high space complexity of SVD, where the data points
are inserted incrementally to update the SVD. To our
knowledge, such algorithms come with no guarantees
on the quality of the approximation produced. Low
rank approximation by random sampling was studied
in (Achlioptas & McSherry, 2001; Drineas et al., 1999;
Frieze et al., 1998) to speed up the SVD computation.
However, the effectiveness of these approaches is de-
pendent on the spectral structure of data matrix.

In this paper, we present a novel approach to allevi-
ate the expensive SVD computation. The novelty lies
in a new data representation model. Under this new
model, each datum is represented as a matrix, instead
of a vector, and the collection of data as a sequence of



matrices, instead of a single large matrix. The prob-
lem of low rank approximations becomes the problem
of approximating a sequence of matrices with matrices
of lower rank. We formulate this as a new optimization
problem. Details will be given in Section 3. Unlike the
traditional problem of approximating a single matrix,
there is no closed form solution for the new optimiza-
tion problem. We thus derive an iterative algorithm.
Detailed mathematical justification for this iterative
procedure is provided.

A natural application for this new approach is in image
compression and retrieval, where each image is repre-
sented in its native matrix representation. To evaluate
the proposed algorithm, we did extensive experiments
on four well-known face image datasets: PIX, ORL,
AR and PIE and compared the proposed algorithm
with traditional SVD based method. Empirical results
show that: (1) The proposed algorithm outperforms
the traditional SVD based method in terms of classifi-
cation accuracy, when using the same compression ra-
tiol; (2) The proposed algorithm has distinctively less
computational time than the traditional SVD based
method.

The rest of this paper is organized as follows. We
give a brief overview on low rank approximations in
Section 2. The problem of generalized low rank ap-
proximations of matrices is studied in Section 3. A
performance study is presented in Section 4. The con-
clusion is in Section 5.

The notations used throughout the rest of this paper
are listed in the Table 1.

Table 1. Notations

Notations | Descriptions

A; the i-th data point in matrix form
r number of rows in A;

c number of columns in A;

L transformation on the left side
R transformation on the right side
D; reduced representation of A;

2 number of rows in D;

2 number of columns in D;

k rank of reduced matrix by SVD
A data matrix

n number of training data points
N dimension of training data

'Here the compression ratio means the percentage of
space saved by the low rank approximations to store the
data. Details can be found in Sections 2 and 3.

2. Low Rank Approximations

Traditional methods in information retrieval and ma-
chine learning deal with data in vectorized representa-
tion. A collection of data is then stored in a single ma-
trix A € RN*" where each column of A corresponds
to a vector in the N-dimensional space. A major ben-
efit of this vector space model is that the algebraic
structure of the vector space can be exploited (Berry
et al., 1995).

For high-dimensional data, one would like to simplify
the data, so that traditional machine learning and sta-
tistical techniques can be applied. However, crucial in-
formation intrinsic in the data should not be removed
under this simplification. A widely used method for
this purpose is to approximate the single data matrix,
A, with a matrix of lower rank. Mathematically, the
optimal rank %k approximation of a matrix A, under
the Frobenius norm can be formulated as follows:

Find a matrix B € RV*" with rank(B) = k, such

that B = argming, ;) py_; [|A — Bl|F,

where the Frobenius norm, ||M||g, of a matrix M =

(M;;) is given by |[M||p = \/ﬁ The matrix

g g
B can be readily obtained by computing the Singu-
lar Value Decomposition (SVD) of A, as stated in the

following theorem (Golub & Van Loan, 1996).

Theorem 2.1. Let the Singular Value Decomposi-
tion of A € RN*" be A = UDVT, where U and V
are orthogonal, D = diag(cy, -+ ,0.,0,---,0), o1 >

- >0, >0 and r = rank(A). Then for 1 < k <
P Sy 0? = min{l|A — Bl | rank(B) — k}.
The minimum is achieved with B = besty(A), where
besty,(A) = U diag(o1,- -+ ,o1)V,L, and Uy, and Vj, are
the matrices formed by the first k columns of U and V'
respectively.

For any approximation, M, of A, we call ||A—M]||F the
reconstruction error of the approximation. By Theo-
rem 2.1, B = Ugdiag(o1,--- ,0%)V,] has the small-
est reconstruction error among all the rank k ap-
proximations of A. Under this approximation, each
column, a; € RN, of A can be approximated as
a; ~ Ukaf, for some al-L € R*. Since Uj has or-
thonormal columns, [|Ugaf — Urak|| = lla} — ak||,
i.e., the Euclidean distance between two vectors are
preserved under the projection by Uy. It follows that
la; — a;|| = ||[Ura} — Upaf|| = ||a} — al]|. Hence the
proximity of a; and a;, in the original high-dimensional
space, can be approximated by computing the proxim-
ity of their reduced representations al and aJL . This

forms the basics for Latent Semantics Indexing (Berry



et al., 1995; Deerwester et al., 1990), widely used
in informational retrieval. Another potential applica-
tion of the above rank k approximation is data com-
pression. Since each a; is approximated by UgaF,
where Uy is common for every a;, we need to keep
Uy and {ar}7_, only for all the approximations. Since
Up € RV** and al € R* for i =1,--- n, it requires
nk+ Nk = (n+ N)k scalars only to store the reduced
representations. The storage saved, or compression
ratio, using the rank k approximation is thus —2&,

(n+N)k>

since the original data matrix A € RN*",

3. Generalized Low Rank Approxima-
tions

3.1. Problem formulation

In this section, we study the problem of generalized low
rank approximations, which aims to approximate a se-
quence of matrices with lower rank. A key difference
between this generalized problem and the low rank ap-
proximation problem, discussed in the last section, is
the data representation model applied. Recall that the
vector space model is applied for the traditional low
rank approximations. The vector space model leads
to a simple and closed form solution for low rank ap-
proximations by computing the SVD of the data ma-
trix. However, the high time and space complexities of
SVD restricts its applicability to matrices with large
size. Instead, we apply a different data representa-
tion model, under which, each datum is represented
by a matrix and the collection of data is represented
by a sequence of matrices. The corresponding gener-
alized low rank approximation problem becomes the
problem of approximating a sequence of matrices with
lower rank. Details are given below.

Let A; € R"™*¢, for i = 1,--- ,n, be the n data points
in the training set. We aim to compute two matrices
L € R™% and R € R®*** with orthonormal columns,
and n matrices D; € R*% gsuch that LD;R” is a
good approximation of A;, for all . Mathematically,
we can formulate this as the following minimization
problem: Computing optimal L, R and {D;} ;, which
solve

n
min > [|Ai = LD:R" (. (1)
Ler™ . LTrL=1,
ReR*2 . RTR=1,, =
D; e Rf1%f2 ;. j=1,... n

We can consider L and R in the above approximations
as the two-sided linear transformations on the data in
matrix form, with L and R as the transformations on
the left and right sides, respectively. Recall that in

the case of traditional low rank approximations, one-
sided transformation is applied, which is Uy in our
previous discussions. Note that the matrices {D;}?
are not required to be diagonal, which contrasts with
the traditional low rank approximations by SVD.

The common transformations L and R with orthonor-
mal columns, in the above approximations, naturally
lead to several basic applications:

e Data compression: The matrices L, R, and
{D;}_; can be used to recover the original n
matrices {A4;}7,, assuming LD;RT is a good
approximation of A;, for each ¢. It requires
rl1 + cly + nlily scalars to store L € R™*,
R € R®**2 and {D;}, € R4*%. Hence, the
storage saved, or the compression ratio using the
approximations is since A; € R™™¢,
for each 1.

nrc
rl1+clot+nlils’

e Similarity computation: A common simi-
larity metric between A; and A; is the Frobe-
nius norm. Under this metric, the distance be-
tween A; and A; is ||4; — Aj||r, whose compu-
tational complexity is O(rc¢). Using the approxi-
mations, ||4; — Aj||r ~ ||LD;RT — LD;RT||p =
||D;—Dj||r, since both L and R have orthonormal
columns. It is clear that the computational cost
for computing ||D; — Dj||r is O(¢1¢2). Hence, the
speed-up on a single distance computation using

the reduced representations, is ;5.
? €1Z2

Note that as ¢; and ¢ decrease, the speed-up on the
distance computation and the compression ratio in-
crease. However, small values of {1 and {5 may lead to
loss of information intrinsic in the original data. We
discuss this trade-off in Section 4.

The formulation in Eq. (1) is general, in the sense that
£1 and /5 can be different, which might be useful in the
case when the number, 7, of rows of A; is much larger
or smaller than the number, ¢, of columns of A;.

3.2. The main algorithm

In the rest of this section, we show how to solve the
minimization problem in Eq. (1). The result in the
following theorem shows that the D;’s are dependent
on the transformation matrices L and R, which signif-
icantly simplifies the minimization in Eq. (1).

Theorem 3.1. Let L, R and {D;}?_, be the optimal
solution to the minimization problem in Eq. (1). Then
D; = LT A;R, for everyi.



Proof. By the property of the trace of matrices,

>y [1Ai = LD R[5
= I trace ((4; — LD;RT)(A; — LD;R™)T)

S trace(A; AT ) + Z trace(D; D)
i=1

-2 Y trace(LD;RTA]), (2)

where the second term Y, trace(D;D}) results from
the fact that both L and R have orthonormal columns,
and trace(AB) = trace(BA), for any two matrices.

Since the first term in the right side of Eq. (2) is a
constant, the minimization in Eq. (1) is equivalent to
minimizing

Z trace(D; D) — 2 Z trace(LD;RT AT).  (3)
i=1 i=1

It is easy to check that the minimum of (3) is obtained,
only if D; = LT A;R, for every i. This completes the
proof of the theorem. [l

Theorem 3.1 implies that D; is uniquely determined
by L and R with D; = LT A;R, for all i. Hence the
key step for the minimization in Eq. (1) is the com-
putation of the common transformations L and R. A
key property on the optimal transformations L and R
is stated in the following theorem:

Theorem 3.2. Let L, R and {D;}, be the optimal
solution to the minimization problem in Eq. (1). Then
L and R solve the following optimization problem:

SILTARG. (4)

max

rer™ . LTr=1, £
ex 4l T i=1

ReR*2: RTR=1,,

Proof. From Theorem 3.1, D; = LT A;R, for every i.
Plugging D; = LT A;R into >, ||A; — LD; RT||%., we
obtain

D l[Ai = LDiRT|5 = Y || Ail[3 = D ILT AR5
i=1 i=1 i=1
()

Hence the minimization in Eq. (1) is equivalent to the
maximization of Y1 | [|LTA;R||%, which completes
the proof of the theorem. O

To our knowledge, there is no closed form solution for
the maximization in Eq. (4). A key observation, which
leads to an iterative algorithm for the computation of
L and R, which are locally optimal, is stated in the
following theorem:

Theorem 3.3. Let L, R and {D;}!_, be the optimal
solution to the minimization problem in Eq. (1). Then

1. For a given R, L consists of the {1 eigenvectors of
the matriz My, = > i | A;RRT AT corresponding
to the largest {1 eigenvalues.

2. For a given L, R consists of the £y eigenvectors of
the matriz Mr = Y i ATLLT A; corresponding
to the largest o eigenvalues.

Proof. By Theorem 3.2, L and R maximize

n

YOI AR,

i=1
which can be rewritten as

S trace(LT A;RRT ATL)

= trace (LT Z(AiRRTA;fF)L>

i=1

= trace (L"M.L). (6)

Hence, for a given R, the maximum of
S ILTAR||3 = trace (LTMpL) is obtained,
only if L € R™% consists of the f; eigenvectors
of the matrix My corresponding to the largest ¢4
eigenvalues. The maximization can be considered as a
special case of the more general optimization problem
in (Edelman et al., 1998).

Similarly, for a given L, the maximum of
S IILTAR||3. = trace (RTMgR) is obtained,
only if R € R consists of the fy eigenvectors
of the matrix Mg corresponding to the largest /o
eigenvalues, where Mp =>""" | ATLLT A;.

O

Theorem 3.3 provides us an iterative procedure for
computing L and R. More specifically, for a given
L, we can compute R by computing the eigenvectors
of the matrix M. With the computed R, we can then
update L by computing the eigenvectors of the matrix
Mjp,. The procedure can be repeated until convergence.
The pseudo-code for computing L and U following the
above iterative procedure is given in Algorithm 1.

Theoretically, the solution from Algorithm 1 is only
locally optimal. The solution depends on the choice
of the initial Ly for L. We did extensive experiments
1o,
0
an identity matrix, produces excellent results. We thus
use this initial Lg in all the experiments.

and found that choosing Ly = , Where Iy, is



Algorithm 1: Generalized Low Rank
Approximations
Input: matrices {4;}7,
Output: matrices L, R, and {D;}"
1. Obtain initial Lo and set i « 1
2. While not convergent
3. form the matrix Mpr = Z?:1 AjTLi,lL?_lAj
4. compute the /5 eigenvectors {qﬁf}ﬁil
of Mg corresponding to the largest
{5 eigenvalues
5. R; — [of, - ,¢g]
form the matrix My = >"_| A;R;R] AT
7. compute the ¢; eigenvectors {ngJL }?:1
of My, corresponding to the largest
{1 eigenvalues
8. L, — [¢1L’ ..
9. 1— 1+ 1
10. EndWhile
11. L «— L;_4
12. R+ Ri—l
13. For j from 1 to n
14. D; — LTA;R
15. EndFor

>

0]

Theorem 3.3 implies that the updates of the matrices
in Lines 5 and 8 of the Algorithm 1 increase the value
of Y0 | ||ILT A;R||%. Hence by Theorem 3.2, the value
of > | ||A; — LD, R"||% decreases, or

1 n
22l B
decreases. Here RMSRE stands for the root mean

square reconstruction error. A similar measure was
used in (Ye et al., 2004). The convergence of the Al-
gorithm 1 follows, since RMSRE is bounded from
below by 0, as stated in the following Theorem:

Theorem 3.4. Algorithm 1 monotonically de-
creases the the RMSRE wvalue as defined in Eq. (7),
hence it converges.

We thus use the RMSRE value to check the con-
vergence of Algorithm 1. More specifically, let
RMSRE(i) and RMSRE(i — 1) be the RMSRE value
at the i-th and (i — 1)-th iterations from Algorithm
1, then the convergence of the algorithm is determined
by checking whether RMSRE(: — 1) — RMSRE(7) < 7,
for some small threshold > 0. In the following ex-
periments, we choose n = 0.05.

We investigate the convergence property of the pro-
posed algorithm, using the four datasets described in

Section 4. For simplicity, we set {1 = 20 and ¢5 = 20
for all cases. The results on all four datasets show that
the RMSRE value drops dramatically during the first
and second iterations and it stabilizes after two itera-
tions. Thus, the proposed algorithm converges within
two iterations for all four datasets.

3.3. Time and space complexities

We close this section by analyzing the time and space
complexities of the proposed algorithm.

The most expensive steps in Algorithm 1 are the
formation of the matrices Mg and My, in Lines 3 and
6 respectively, and the formation of D; in Lines 13-15.

It takes O(¢1c(r + ¢)n) time for computing Mpr and
O(lar(r 4+ ¢)n) time for computing M. The compu-
tation of D; = (LT(A;R)) using the given order is
O(rely +réaly) = O(réy(c+£1)). Assume the number
of iterations in the while loop (from Line 2 to Line 10
in Algorithm 1) is I. The total time complexity can
be simplified as O(I(r + ¢)? max(¢y, {2)n).

The key to the low space complexity of the algorithm
is that the formation of the matrices Mz and My, can
be processed by reading the matrices A; incrementally.
It is easy to verify that the space complexity for Al-
gorithm 1 is O(rc).

4. Experimental evaluations

In this section, we experimentally evaluate our pro-
posed algorithm on face image data. All of our exper-
iments are performed on a P4 1.80GHz linux machine
with 1GB memory. For face images, the number, r, of
rows and the number, ¢, of columns are comparable,
we thus set both ¢; and ¢ equal to a common value, d,
in all the following experiments, for simplicity. How-
ever, the algorithm works in the general case.

We present the four face image datasets used for our
evaluation in the first part. The effect of the com-
mon value, d, for both ¢1 and /5, used in the proposed
algorithm is discussed in the second part. Finally, a
detailed comparative study between the proposed al-
gorithm and SVD is provided, where the comparison
is made on classification accuracy, and efficiency.

For all the experiments, we use the K-Nearest neigh-
bors (K-NN) method based on the Euclidean distance
for classification. We use 10-fold cross-validation for
estimating the classification accuracy. In 10-fold cross-
validation, we divide the data into ten subsets of (ap-
proximately) equal size. Then we do the training and
testing ten times, each time leaving out one of the
subsets for training, and using only the omitted sub-



Table 2. Statistics of our test datasets

Dataset | Size | Dim | # of classes
PIX 300 | 10000 30
ORL 400 | 10304 40

AR 1638 | 8888 126
PIE 6615 | 38500 63

set for testing. The classification accuracy reported is
the average from the ten runs.

4.1. Datasets

We use the following four well known face datasets,
which are publicly available, in our experiments:
PIX?, ORL?, AR* (Martinez & Benavente, 1998), and
PIES(Sim et al., 2002). The statistics of the four
datasets are summarized in Table 2. Note that for AR
and PIE, we only use a subset of the whole datasets.

4.2. The effect of the value of d

Recall that we choose a common value, d, for both ¢
and f5. Thus, the value of d determines the dimen-
sionality in the transformed space by the proposed al-
gorithm. A large d leads to a small compression ratio,
which may not be effective for dimension reduction,
while a small d may lose some information intrinsic in
the dataset. It is difficult to determine the optimal
value of d theoretically. We did extensive experiments
using different values of d on the four datasets. The
results are summarized in Figure 1, where the z-axis
denotes the the value of d (between 2 and 20) and
the y-axis denotes the classification accuracy with 1-
Nearest-Neighbor as the classifier. As shown in Fig-
ure 1, the accuracy curves on the PIX, ORL and PIE
datasets stabilize around d = 4 to 6, while the accu-
racy curve on the AR dataset stabilizes around d = 18.
Note that the low accuracy on the AR dataset may
be related to the large within-class variance of each
class/individual in the AR dataset.

4.3. Classification effectiveness

In this experiment, we evaluate the effectiveness of the
proposed algorithm in terms of classification accuracy
and compare with SVD. Figures 2—4 show the accuracy
curves of these two algorithms on the three face image
datasets: PIX, ORL, and AR, respectively. The z-

http://peipa.essex.ac.uk/ipa/pix/faces/manchester/
3http://www.uk.research.att.com/facedatabase.html
*http://rvll.ecn.purdue.edu/~aleix/aleix _face_DB.html
Shttp://www.ri.cmu.edu/projects/project_418.html
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Figure 1. The effect of the value of d

axis denotes the number of nearest neighbors in K-
NN, and the y-axis denotes the classification accuracy.
Note that SVD is not applicable for PIE, due to its
large size. However, the proposed algorithm has the
minimum space requirement and is applicable for PIE.
For all datasets, d = 20 is applied for the proposed
algorithm. The reduced rank, k, in SVD is chosen
such that both SVD and the proposed algorithm have
the same compression ratio. Thus, k£ = 12,15,73 are
chosen for datasets PIX, ORL, and AR, respectively.

The main observations include:

e For all datasets, both the proposed algorithm and
SVD have the best performance when K = 1 near-
est neighbor is used in K-NN.

e Our proposed algorithm outperforms SVD consis-
tently for all datasets.

e Interestingly, SVD is not applicable for PIE, since
SVD requires the whole data matrix to reside in
main memory, which is not the case for the PIE
dataset, due to its large size. However, our pro-
posed algorithm has the minimum memory re-
quirement and is thus applicable for PIE.

To give a concrete idea of the difference, Figure 5 shows
images for 10 different persons from the ORL dataset.
The 10 images in the first row are the original images
from the dataset. The 10 images in the second row
are the ones compressed by our proposed algorithm
with d = 20. The compression ratio is about 25. The
same compression ratio can be obtained, if the reduced
rank in SVD is set to be 15. The resulting images are
shown in the third row of Figure 5. It is clear that the
images compressed by our proposed algorithm have
better visual quality than those compressed by SVD,
when using the same compression ratio.
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Figure 4. Comparison of classification accuracy using AR
dataset
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Figure 5. First row: original images. Second row: images
compressed by the proposed algorithm. Third row: images
compressed by SVD.

4.4. Comparative study on efficiency

In this experiment, we examine the efficiency of the
proposed algorithm and compare with SVD. Figure 6
shows the CPU time of the proposed algorithm and
SVD on four datasets. The CPU time of SVD on the
PIE dataset is not shown, due to the same reason as
mentioned above. The main observation is:

e The proposed algorithm has distinctly less compu-
tational time than SVD. As the size of the dataset
gets larger from PIX to ORL to AR, the speedup
of our proposed algorithm over SVD increases.
For the AR dataset, our proposed algorithm is
almost two orders of magnitude faster compared
to SVD.

Note that the time complexity of the proposed algo-
rithm is O(I(r + ¢)2dn). Assuming r ~ ¢ ~ VN
(note N = rc), the time complexity of the proposed
algorithm can be simplified as O(IdnN), while the
time complexity of SVD is O(n?N), assuming n < N.
Hence, as n gets larger, the speed-up of the proposed
algorithm over SVD is also larger.

5. Conclusions

A novel algorithm for low rank approximations of a
sequence of matrices is presented. The algorithm is
iterative, in the sense that the approximation is im-
proved during iterations. Empirical results show that
the algorithm converges within few iterations.

A natural application of this approach is in image
compression and retrieval, where each image is rep-
resented in its native matrix form. We evaluate the
proposed algorithm in terms of classification accu-
racy, and efficiency, and compare with traditional SVD
based method. A key observation is that the proposed
algorithm has minimum space requirement, and lower
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Figure 6. Comparison of efficiency using the four datasets.
Note that SVD is not applicable for the PIE dataset, due
to its large size.

time complexity than SVD, which is desirable for large
datasets (such as PIE), while experiments show supe-
rior performance of the proposed algorithm over SVD,
in terms of classification accuracy.
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