
Leveraging the Margin More Carefully

Nir Krause KNIR@CS.HUJI.AC.IL

Yoram Singer SINGER@CS.HUJI.AC.IL

School of Computer Science and Engineering, The Hebrew University, Jerusalem, 91904, Israel

Abstract
Boosting is a popular approach for building ac-
curate classifiers. Despite the initial popular be-
lief, boosting algorithms do exhibit overfitting
and are sensitive to label noise. Part of the sen-
sitivity of boosting algorithms to outliers and
noise can be attributed to the unboundedness of
the margin-based loss functions that they em-
ploy. In this paper we describe two leverag-
ing algorithms that build on boosting techniques
and employ a bounded loss function of the mar-
gin. The first algorithm interleaves the expec-
tation maximization (EM) algorithm with boost-
ing steps. The second algorithm decomposes a
non-convex loss into a difference of two con-
vex losses. We prove that both algorithms con-
verge to a stationary point. We also analyze the
generalization properties of the algorithms using
the Rademacher complexity. We describe exper-
iments with both synthetic data and natural data
(OCR and text) that demonstrate the merits of our
framework, in particular robustness to outliers.

1. Introduction

In this paper we focus on the problem of supervised clas-
sification learning. In this setting we receive a training set
of instance-label pairs S = {(xi, yi)}m

i=1. For concrete-
ness we assume that xi ∈ R

n and denote its j coordinate
by xij . We confine this discussion to binary problems and
thus yi ∈ {−1,+1}. The class of classifiers we consider is
the set of all threshold linear classifiers, sign(λλλ · x) where
λλλ ∈ IRn. We do not assume however that the data is lin-
early separable, thus there exist few examples (xi, yi) ∈ S
such that yi(λλλ · xi) < 0 for any λλλ ∈ IRn. The problem of
finding a linear classifier that attains the minimal number of
classification errors on S is NP-hard [10]. Therefore, learn-
ing techniques that employ a smooth and convex bound on
the classification (0-1) error have been widely used. Specif-
ically, boosting techniques use losses such as the exponen-

Appearing in Proceedings of the 21
st International Conference

on Machine Learning, Banff, Canada, 2004. Copyright 2004 by
the author/owner.

tial loss or the logistic-loss (see for instance [2] for a unified
account of the two losses for boosting). The problem with
convex losses is that they must diverge to ∞ as the margin
of an example, yi(λλλ · xi) tends to −∞. To overcome this
problem, few approaches that employ non-convex losses
have been proposed. Unfortunately, such methods do not
yield a boosting algorithm in the classical notion of weak-
learnability due to an impossibility theorem by Duffy and
Helmbold [6]. Boosting-style methods that do not achieve
a PAC-boosting property were referred to as leveraging al-
gorithms by Duffy and Helmbold. Nonetheless, leveraging
methods often yield effective and accurate classifiers and
are robust to label noise.
In this work we propose two different leveraging algo-
rithms that employ non-convex losses of the margin. The
proposed algorithms are as simple to implement as the orig-
inal AdaBoost algorithm of Freund and Schapire [9] and
its closely related variants [15, 2]. As in [2], the two algo-
rithms can be employed in a sequential manner in which
a single feature (or weak-hypothesis) is chosen on each
boosting step, as well as a fully parallel mode in which the
weights of all the features are updated together. Last, but
not least, when used in the classical sequential mode, the
two algorithms induce a criterion (via an objective func-
tion) that guides the weak-learner in its search for a new
hypothesis to add. This loss criterion is directly related to
the decrease of the overall loss due to the addition of a new
hypothesis.
The first algorithm is described in Sec. 2. We start by giv-
ing a probabilistic account which assumes the existence of
an unobserved label noise. We derive an algorithm that
combines the expectation maximization (EM) estimation
procedure with boosting steps. This algorithm weights the
examples according to their margin and their probability of
being outliers. Boosting-style steps are used to update λλλ
according to these weights. We prove that this algorithm
converges to stationary point. The second approach, which
is presented in Sec. 3, decomposes the non-convex loss
function into a difference of two logistic functions, each
of which is clearly convex. Here we derive a leveraging al-
gorithm that is based on a recent additive update for boost-
ing [3]. We analyze the loss functions that both algorithms
employ in Sec. 4. We derive a generalization bound for
both algorithms based on the Rademacher complexity in



Sec. 5. We conclude with experiments using synthetic and
natural data that demonstrate the robustness of the algo-
rithms to label noise. These experiments are described in
Sec. 6.

Various previous research papers are used as building
blocks in this paper. We use L. Baum’s EM algorithm
for maximum likelihood of incomplete data which was for-
mally introduced in [4]. Our boosting steps are based on the
boosting algorithms described in [2] and [3]. Our algorith-
mic approach of minimizing the difference of two convex
functions is described thoroughly in [17] and was first em-
ployed for classification learning in [19] to devise robust
support vector machines. The generalization analysis we
employ is based on the generalization bounds given in [1].
Our work is also more remotely related to numerous pa-
pers in machine learning and statistics. The use of EM for
missing labels and corrupted labels has already been men-
tioned in the discussion following the paper of Dempster,
Laird, and Rubin. An example of an application of EM for
missing labels can be found in [13]. The idea of combining
EM with an iterative minimization procedure in a different
context (and different analysis) was recently explored by
Wang et al. [18]. There are many works that try to improve
boosting, and give algorithms that are more robust to label
noise. We survey here only a few of them. An algorithm
that directly minimizes the 0-1 loss in k steps using weak
learners with known accuracy is described in [7]. This idea
is enhanced to an adaptive algorithm in [8], but using a
complex algorithm. In [16] a PAC boosting algorithm is
developed using smooth distributions. This algorithm can
tolerate low malicious noise rates but it requires the access
to a noise tolerant weak learner of a known accuracy. A
similar approach to ours is presented by some papers. [12]
employ the non-convex normalized sigmoid function as the
loss function of their leveraging algorithm DOOM II. Their
algorithm includes only a sequential version, and the objec-
tive function that the weak-learner has to minimize is not
directly related to the decrease in the loss. Finally, the al-
gorithm AdaBoostreg from [14], decreases the weight of
examples that had large influence in previous rounds. It
has extensions which solve the ν − LP problem (the LP
equivalent of the SVM problem). These algorithms require
line searches to compute the weights of the weak-learners
whereas the algorithms described in this paper are simple
to implement and their updates are computed analytically.

2. A Logistic Mixture Model

2.1. The Probabilistic Model

In our probabilistic model we assume that the noise-free
(true) label ti is generated by a logistic model that depends
on xi and a vector λλλ ∈ R

n. We further assume that the
noise is a Bernoulli variable, with parameter ε, such that
with probability ε the correct label is inverted, and the ob-

served label yi is obtained. The conditional probabilities
due to these assumptions are as follows,

P(λλλ,ε)(ti|xi) =
1

1 + e−tiλλλ·xi
, (1)

P(λλλ,ε)(yi, ti|xi) =

{

1−ε

1+e−tiλλλ·xi
ti = yi

ε

1+e−tiλλλ·xi
ti 6= yi

.

We define αi(λλλ, ε) as the probability that the observed la-
bel yi is different from the noise-free label ti. This is in fact
the probability that label noise occurred given xi and yi,

αi(λλλ, ε)
def
= P(λλλ,ε)(ti 6= yi|xi, yi) =

ε

(1 − ε)eyiλλλ·xi + ε
.

The goal is to devise a classifier that is more resistant
to noise than boosting by incorporating the noise model
above. We therefore cast our task as finding the parameters
ΘΘΘ = (λλλ, ε) which minimize the negative log-likelihood of
the observed data, which we call the logistic mixture loss,

LLM (ΘΘΘ; S) = −
m

∑

i=1

ln

(

1 − ε

1 + e−yiλλλ·xi
+

ε

1 + eyiλλλ·xi

)

.

In the algorithm description below and the experiments,
we either allow ε to be fixed or estimate its value.

2.2. Combining Boosting Updates with EM

The EM algorithm [4] is the standard tool of choice for pa-
rameter estimation from incomplete data. The algorithm
is composed of two steps: an E (Expectation) step and an
M (Maximization) step. By repeating the E and M steps
we converge to a stationary point of the log-likelihood of
the model. We now specify the EM iterations for our set-
tings. In the E step we replace each hidden variable (the
unobserved value of ti) with its expectation, i.e. αi(λλλt, εt),

which we denote αi,t
def
= αi(λλλt, εt) from here on.

In the M step we set ΘΘΘt+1 to be the parameters that
maximize the expectation of the log likelihood of the
unobserved data and the observed data, where prob-
abilities are calculated using ΘΘΘt. That is we let
ΘΘΘt+1 = argmaxΘΘΘQ(ΘΘΘ,ΘΘΘt) where
Q(ΘΘΘ,ΘΘΘt) =

=
∑

i

∑

ti

PΘΘΘt(ti|xi, yi) ln PΘΘΘ(yi, ti|xi)

=
∑

i

(

(1 − αi,t) ln(1 − ε) + αi,t ln ε −

(1 − αi,t) ln(1 + e−yiλλλ·xi) − αi,t ln(1 + eyiλλλ·xi)
)

.

Maximization of Q(ΘΘΘ,ΘΘΘt) with respect to ε gives

εt+1 =
∑

i αi,t

m
, where as λλλt+1 is the minimizer of the loss,

∑

i

(

(1 − αi,t) ln(1 + e−yiλλλ·xi) + αi,t ln(1 + eyiλλλ·xi)
)

.

(2)
The above expression implies that maximizing Q(ΘΘΘ,ΘΘΘt)

with respect to λλλ is equivalent to minimizing a weighted lo-
gistic loss with 2m examples where each original example
(xi, yi) is replaced with two weighted examples: (xi, yi)
with weight 1 − αi,t and (xi,−yi) with weight αi,t.



LLM (M, ε, T, update-ε,A)
Requirements:
A ⊂ R

n
+

∀a ∈ A ∑

j aj |Mij | ≤ 1

∀j ∃a ∈ A s.t. aj > 0
init: λλλ1 = 0, ε1 = ε
For t=1,..,T
∀i : αi = εt

εt+(1−εt)e[Mλλλt]i
, qi = 1

1+e[Mλλλt]i

For j=1,...,n:

W̃+
j =

∑

i:Mij>0

(1 − αi)qi|Mij |

W̃−
j =

∑

i:Mij<0

(1 − αi)qi|Mij |

W+
j = W̃+

j + εtW̃
−
j /(1 − εt)

W−
j = W̃−

j + εtW̃
+
j /(1 − εt)

dj = 1
2 ln

(

W+
j

W−

j

)

End

a = argmax
a∈A

∑n
j=1 aj

(√

W+
j −

√

W−
j

)2

∀j δj = ajdj

λλλt+1 = λλλt + δδδ
if update-ε

εt+1 =
∑

i αi

m

else
εt+1 = εt

End

Figure 1. The LLM algorithm.

An Approximate M-Step: We now focus on adapting
a boosting-based algorithm for finding the minimizer of
Eq. (2). Since there is no analytical solution for the min-
imizer, we need to devise an iterative minimization proce-
dure. These iterations are interleaved with the E-step of
EM which computes the auxiliary variables αi,t.

To derive our approximate M-step we first briefly describe
one of the algorithms described by Collins et al. [2]. The
algorithm belongs to a whole family of algorithms for find-
ing the minimizer λλλ of the log-loss,

∑

i ln(1 + e−yiλλλ·xi).
To find the minimizer of the log-loss Collins et al. devised
the following iterative procedure. Let λλλt denote the esti-
mate for the minimizer of the log-loss at the j’th iteration.
Then, each example (xi, yi) is assigned a weight qi based
on this estimate where, qi = 1

1+eyiλλλt·xi
. The weight of an

example reflects the probability of misclassifying the ex-
ample according to the logistic model defined by Eq. (1).
For ease of reading we define, from here on, the matrix M
by Mi,j = yixi,j . Based on the matrix M and the weights
qi we denote W+

j and W−
j for each feature j,

W+
j =

∑

i:Mij>0

qi|Mij | and W−

j =
∑

i:Mij<0

qi|Mij | .

Informally speaking, these weights reflect the correlation
between the probability to misclassify the examples and the
absolute value of the j’th feature for each example. The
next estimate λt+1,j is computed from the current estimate

and the weights as follows,
λt+1,j = λt,j + 1/2 ln(W+

j /W−

j ) . (3)
The above update was derived for noise-free classification

settings with the log-loss. Our setting is however more in-
volved. We observe a noisy version of the labels and need
to minimize the loss with respect to the, hidden, true la-
bels. Therefore, each example is associated with two pos-
sible true labels yi,−yi, with probabilities 1 − αi,t, αi,t

respectively. For each possible label we need to take into
account its weight and probability according to the logistic
model (Eq. (1)) as reflected by qi. The end result is that
to compute W+

j and W−
j we need to go over all indices i

and “split” the contribution of each example between W +
j

and W−
j . This yields the following calculation for the loss

defined by Eq. (2),

W+
j =

∑

i:Mij>0

(1 − αi,t)qi|Mij | (4)

+
∑

i:Mij<0

αi,t(1 − qi)|Mij |

W−

j =
∑

i:Mij<0

(1 − αi,t)qi|Mij | (5)

+
∑

i:Mij>0

αi,t(1 − qi)|Mij | .

We can now proceed as before to compute λλλt+1 from λλλt

as given by Eq. (3). The M-step of an EM algorithm re-
quires finding the minimizer of Eq. (2). This can easily be
done using many iterations of the above update rule. How-
ever, as we show in the next section, it is sufficient to per-
form a single update as an approximate M-step. In this
case we only update ΘΘΘ′ such that it decreases Q(ΘΘΘ′,ΘΘΘ),
yet not minimizes it, and this is in fact a GEM algo-
rithm. When performing a single approximate M-step we
can further simplify the boosting-based update. In which
case we can rewrite Eq. (4) and Eq. (6) and avoid the ad-
ditional computation imposed when computing W +

j and
W−

j . This is due to the fact that the same value of λλλ
and ε is employed for the computation of both αi,t and
qi. We now describe the more efficient single approximate
M-step. Define W̃+

j =
∑m

i=1:Mij>0(1 − αi,t)qi|Mij | and

W̃−
j =

∑m
i=1:Mij<0(1 − αi,t)qi|Mij |. For fixed λλλ and ε it

is easy to verify that (1−αi,t)qi = 1−ε
ε

αi,t(1−qi). Hence
we can rewrite the original variables W +

j and W−
j as,

W+
j = W̃+

j + ε
1−ε

W̃−
j and W−

j = W̃−
j + ε

1−ε
W̃+

j . The
pseudo code for the version that alternates between an
E-step and a single boosting-based M-step is given in
Fig. 1. We term the algorithm the Leveraging Logistic
Mixture algorithm (LLM). This version was used in our
experiments, however other variants, such as extensions to
multiclass, can also be derived. The details of these vari-
ants and extensions are omitted due to the lack of space.

A parametric family of algorithms: This algorithm re-
ceives as input a template set A. Using the template set we



describe in a unified view both a parallel algorithm and a
sequential one. The choice of algorithm to be implemented
is done by setting the appropriate template set. By setting
A = {(1, 1, ..., 1)}, we obtain a parallel algorithm - an al-
gorithm that updates all the indices in each step. If we let
A = {ei}n

i=1 (ei denotes the ith unit vector), we receive a
sequential boosting algorithm. This algorithm has a simple
criterion for choosing the weak learner at each step - choose

the weak learner j which maximizes
(√

W+
j −

√

W−
j

)2

.

Our proof of convergence also holds if we change A in each
iteration, as long as the constraints defined on A and M
are kept satisfied. Therefore we can also implement a com-
bined version, in which we sequentially update, yet once in
a while we update the weight of the weak learners accumu-
lated so far in parallel.

2.3. Convergence Analysis

In this section we discuss the convergence of the LLM al-
gorithm. In short, the LLM algorithm belongs to the class
of Generalized EM algorithms [4]. The following lemma
shows that each approximate M-step is guaranteed to in-
crease the value of the auxiliary function Q. Our proof
combines the proof techniques from [2] with standard anal-
ysis for EM.

Lemma 2.1: Let ΘΘΘ′ be the set of parameters obtained after
the update of λλλ. Then Q(ΘΘΘ′,ΘΘΘ) ≥ Q(ΘΘΘ,ΘΘΘ), with equality
only if ΘΘΘ is a stationary point of Q.

Proof: To prove the theorem we view the loss as induced
by a sample of 2m examples where the first m examples are
(xi, yi) with weights βi = 1− αi(λλλ, ε) and the next m ex-
amples are (xi,−yi) (denoted xi+m = xi, yi+m = −yi)
with weights βi+m = αi(λλλ, ε). Given this representation
we can rewrite Q as,

Q(ΘΘΘ′,ΘΘΘ) = c(ε′) −
2m
∑

i=1

βi ln(1 + e−yiλλλ
′
·xi) ,

where c is a constant that depends only on ε′.

We denote by qi and q′i the weight of example i be-
fore and after the update respectively, qi = 1

1+e[Mλλλ]i
and

q′i = 1
1+e[Mλλλ′]i

= 1
1+e[M(λλλ+δδδ)]i

. From these equations we

get that, q′i = qie
−[Mδδδ]i

1−qi+qie
−[Mδδδ]i

. Using this equality and
the inequality 1 + x ≤ ex, we get that,

ln(1 − q′i) − ln(1 − qi) ≥ qi(1 − e−[Mδδδ]i) . (6)

We can rewrite Q(ΘΘΘ′,ΘΘΘ) using q′i as follows,

Q(ΘΘΘ′,ΘΘΘ) = c(ε′) +

2m
∑

i=1

βi ln(1 − q′i) . (7)

Note also that using βi we can rewrite the weights W+
j

and W−
j as follows,

W+
j =

∑

i:Mij>0

βiqi|Mij | ; W−

j =
∑

i:Mij<0

βiqi|Mij | . (8)

Denoting sij = sign(Mij), we can lower bound the
change in Q in the M-step as follows,

Q(ΘΘΘ′,ΘΘΘ) − Q(ΘΘΘ,ΘΘΘ)

Eq. (7)
=

2m
∑

i=1

βi

[

ln(1 − q′i) − ln(1 − qi)
]

Eq. (6)

≥
2m
∑

i=1

βiqi

[

1 − e−[Mδδδ]i
]

=

2m
∑

i=1

βiqi

[

1 − exp(−
n

∑

j=1

ajdjsij |Mij |)
]

≥
2m
∑

i=1

βiqi

[

n
∑

j=1

aj |Mij |(1 − edjsi,j )

]

(9)

Eq. (8)
=

n
∑

j=1

aj

(

W+
j + W−

j − W+
j edj − W−

j e−dj

)

=

n
∑

j=1

aj

(

√

W+
j −

√

W−

j

)2

(10)

def
= A(q) .

Eq. (9) follows from Jensen’s inequality applied to
the convex function ex while using the condition
that

∑

j aj |Mij | ≤ 1; to get Eq. (10) we use

dj = 1
2 ln(W+

j /W−
j ) as in the algorithm.

The function A(q) is an auxiliary function that bounds
from below the increase of Q. Clearly, A(q) ≥ 0 and
A(q) = 0 iff ∀j W+

j = W−
j . When A(q) = 0 we get

by simple derivation that ∂
∂λ′

j
Q(ΘΘΘ,ΘΘΘ) = W+

j − W−
j = 0,

this means that λλλ′ is a stationary point of Q. If we have not
reached a stationary point the value of Q will continue to
increase on each approximate M-step.

Using the definition of Q and the above lemma we see that

Q(λλλt+1,λλλt+1) ≥ Q(λλλt+1,λλλt) > Q(λλλt,λλλt) .
Thus, the series Q(λλλt,λλλt) is monotonically increasing and
converges in value to a stationary point. It directly follows
that the loss, LLM , converges in value to a stationary point.

3. A Logistic Difference Model

−10 −5 0 5 10
0

5

10

15

z

Lo
ss

es
 v

al
ue

s

log2(1+exp(−z))
log2(1+exp(−z−mu))
LD loss
0−1 loss

Figure 3. The construction
of the LD loss (µ = 4).

In this section we present a
seemingly different approach
to obtain a bounded mar-
gin loss function and a cor-
responding leveraging algo-
rithm. Instead of devising
a mixture model of logistic
function we devise a bounded
margin loss by taking the dif-
ference of two logistic func-
tions as follows. Let z denote
the margin of an example. The logistic loss of an example
with margin z is `(z) = ln(1 + e−z). Let µ be a positive
constant. A ”shifted” version of the loss is obtained by



LLD(M,µ, T,A)
Requirements:
A ⊂ R

n
+

∀a ∈ A :
∑

i,j ajM
2
i,j ≤ 2

∀j ∃a ∈ A s.t. aj > 0
init: λλλ1 = 0
For t=1,..,T

qi = 1
1+e[Mλλλt]i

, gi = 1
1+e[Mλλλt]i+µ

Wj =
∑

i Mi,j(qi − gi)
a = argmaxa∈A

∑

j ajW
2
j

∀j δj = ajWj

λλλt+1 = λλλt + δδδ

Figure 2. The LLD Algorithm.

adding µ to z, `(z + µ) = ln(1 + e−z−µ). We now de-
fine the loss at margin z to be the difference between the
logistic loss and its shifted version,

ln(1 + e−z) − ln(1 + e−z−µ) . (11)

The construction of this loss is described in Fig. 3. We term
this loss the logistic-difference (LD) loss. As in the logistic
mixture model, we would like to find a vector λλλ such that
the sign of λλλ · xi is equal to yi as much as possible. Thus,
the logistic-difference loss of the sample S w.r.t λλλ is,

LLD(λλλ; S) =

m
∑

i=1

(

`(yi(λλλ · xi)) − `(yiλλλ · xi + µ)
)

=

m
∑

i=1

(

ln(1 + e−yiλλλ·xi) − ln(1 + e−yiλλλ·xi−µ)
)

.

Our leveraging algorithm for the LD loss is based on a
recent additive update for boosting [3]. In our algorithm,
each example is given a weight which is equal to minus the
derivative of the loss evaluated at the example’s margin.
More formally, let gµ(z) = − d

dz
`(z + µ) = 1

1+ez+µ then
the weight of an example attaining a margin zi = yi(λλλ ·xi)
is g0(zi) − gµ(zi). The pseudo code of the resulting lever-
aging algorithm, called the Leveraging Logistic Difference
algorithm (LLD), is given in Fig. 2. Intuitively, on each
leveraging iteration, LLD approximates the concave part
of the LD loss, −`(z +µ), with a linear function. Since the
difference between a convex function and a linear function
is convex, we can now use boosting technology. Specifi-
cally, LLD performs an additive boosting-step, analogous
to the one described in [3] on the convexified function. We
also exploit this construction to derive in the sequel a lower
bound on the progress of LLD and prove its convergence.

Convergence analysis Our convergence proof is divided
into two parts. In the first part we show a simple convex up-
per bound on the logistic difference loss. In the second part
we show that the t’th iteration decreases this upper bound
(unless we reached a stationary point). We get that the lo-
gistic difference loss decreases on each iteration, and there-
fore converges to a stationary point as it is bounded below.

Recall that every differentiable concave function f is
bounded by its affine minorization at every point, i.e.

f(λλλ) ≤ f(λλλt) + (λλλ − λλλt) · ∇f(λλλt) .

By applying this to the concave part of the loss we get

−
m

∑

i=1

`(yiλλλt+1 · xi + µ)

≤ −
m

∑

i=1

(

`(yiλλλt · xi + µ) +

(λλλ − λλλt) · ∇λλλt`(yiλλλt · xi + µ)
)

= η(λλλt) + λλλ ·
m

∑

i=1

gµ(yiλλλt · xi)yixi ,

where η(λλλt) =
∑m

i=1(λλλt · gµ(yiλλλt · xi)yixi −
`(yiλλλt · xi + µ)). This upper bound is linear and thus
also convex. We add it to the convex logistic loss and get
the following convex bound on the loss,

L̂(λλλ,λλλt; S) = η(λλλt) +
m

∑

i=1

(

`(yiλλλ · xi) + λλλ · gµ(yiλλλt · xi)yixi

)

= η(λλλt) + λλλ · d +

m
∑

i=1

`(yiλλλ · xi) ,

where d =
∑m

i=1 gµ(yiλλλt ·xi)yixi. We deduce that for all
λλλ: LLD(λλλ;S) ≤ L̂(λλλ,λλλt;S), with equality for λλλ = λλλt.

We now concentrate our efforts on showing that L̂(λλλ,λλλt;S)
decreases unless we are at a stationary point.

Lemma 3.1: The decrease in L̂(λλλt+1,λλλt;S) satisfies,

∆t = L̂(λλλt,λλλt; S) − L̂(λλλt+1,λλλt; S) ≥ 1

2

n
∑

j=1

ajW
2
j

Proof: We prove the lemma by using a quadratic func-
tion Q(α) which upper bounds L̂(λλλt + αΛΛΛ,λλλt;S) (for any
fixed λλλt,ΛΛΛ) and then prove progress w.r.t this upper bound.
Define,

Q(α) = L̂(λλλt,λλλt; S) + (∇L0(λλλ; S) + d) ·ΛΛΛ(α − α2

2
)

In order to prove that Q upper bounds L̂ we define their dif-
ference Γ(α) = Q(α) − L̂(λλλt + αΛΛΛ,λλλt;S) and show that
Γ(α) ≥ 0. We do this by showing that Γ is convex
and its minimum is attained at α = 0 (where we have
Γ(0) = 0). First note that Γ′(0) = 0. Hence, 0 is a sta-
tionary point of Γ. Taking the second derivative of Γ

we get, Γ′′(α) = −(∇L0(λλλ;S) + d) ·ΛΛΛ −ΛΛΛT HΛΛΛ, where
H =

∑m
i=1 L′′

0(λλλt + αλλλt;S)xix
T
i . Also, routine calcula-

tions yield that 0 ≤ L′′
0(λλλt + αλλλt;S) ≤ 1/2 and hence

Γ′′(α) ≥ −(∇L0(λλλ; S) + d) ·ΛΛΛ − 1

2

m
∑

i=1

(ΛΛΛ · xi)
2 .

Now we plug in the definitions we use in the algorithm. We
note that W = −(∇L0(λλλ;S) + d) and Λj = δj = ajWj .



Γ′′(α) ≥
n

∑

j=1

ajW
2
j − 1

2

m
∑

i=1

(

n
∑

j=1

√
ajWj

√
ajxi,j)

2

≥
n

∑

j=1

ajW
2
j − 1

2

m
∑

i=1

(

n
∑

j=1

ajW
2
j )(

n
∑

k=1

akx
2
i,k)

=

n
∑

j=1

ajW
2
j (1 − 1

2

m
∑

i=1

∑

k

akx
2
i,k) ≥ 0 .

Where we used Cauchy-Schwartz inequality in the first
inequality, and the constraint

∑

x∈S

∑n
k=1 akx

2
k ≤ 2 in

the last inequality.

We have shown that Γ(α) ≥ 0 and thus Q upper bounds L̂.
Since Q(0) = L̂(λλλt,λλλt;S) we can bound the progress ∆t

from below as follows,

∆t = L̂(λλλt,λλλt; S) − L̂(λλλt+1,λλλt; S)

≥ Q(0) − Q(1) =
1

2

n
∑

j=1

ajW
2
j .

Corollary 3.2: The decrease in the loss at step t satisfies

LLD(λλλt; S) − LLD(λλλt+1; S) ≥

L̂(λλλt,λλλt; S) − L̂(λλλt+1,λλλt; S) ≥ 1

2

n
∑

j=1

ajW
2
j

Lemma 3.3: The algorithm converges by value to a sta-
tionary point of its loss.

Proof: As long as ∇LLD 6= 0 we decrease the loss by
a positive amount (because W = ∇LLD). Therefore the
sequence of losses decreases. It is bounded below by 0,
and hence it must converge. By continuity the convergence
point must be a point in which ∇LLD = 0.

4. A unified view of the loss functions
In this section we show that there is a simple bijection from
ε to µ which makes the losses of LLM and LLD identical.
We also describe a simple affine transformation that nor-
malizes either loss so that the resulting loss approaches 0
as the margin goes to +∞ while bounding everywhere the
0− 1 loss. Let us fix ε and µ. We now add a constant to
each loss and divide the result by another constant in order
to normalize the losses. The resulting normalized losses
are,

LN
LM (z) =

− ln
(

1−ε

1+e−z + ε
1+ez

)

+ ln(1 − ε)

ln(2) + ln(1 − ε)
(12)

LN
LD(z) =

ln(1 + e−z) − ln(1 + e−z−µ)

ln(2) − ln(1 + e−µ)

Examining carefully the above losses, we can see that by
setting e−µ = ε

1−ε
and further algebraic manipulations we

obtain that,

LN
LD(z) =

ln
(

1+e−z

1+e−z−µ

)

ln(2) − ln(1 + e−µ)

=

ln

(

1−ε
1−ε

1+e−z + ε
1+ez

)

ln(2) + ln(1 − ε)
= LN

LM (z) .

Hence, the two losses are identical subject to the trans-
formation of variables, µ = ln( 1−ε

ε
) , or equivalently

ε = 1
1+eµ . Since the two losses are equivalent, from now

on we refer in our analysis only to the logistic mixture loss.

For later use we calculate the Lipschitz constant of the
loss, that is, find a constant ζ such that for any z, z′,
|L(z) − L(z′)| ≤ ζ|z − z′| . For LN

LM (z) this constant
is ζ = 1−2ε

(ln(2)+ln(1−ε))(1+2
√

ε(1−ε))
. We also note that

LN
LM (z) is bounded above by M =

ln 1−ε
ε

ln(2)+ln(1−ε) .

5. Generalization analysis

In [1] generalization bounds are given for classes of func-
tions using their Rademacher complexity. In short, the
Rademacher complexity of a class of functions F , denoted
Rm(F ), is defined as, Rm(F ) = ER̂m(F ) where

R̂m(F ) = E

[

sup
f∈F

∣

∣

∣

∣

∣

2

m

m
∑

j=1

σif(Xi)

∣

∣

∣

∣

∣

|X1, ..., Xm

]

,

and σi are independent random variables sampled uni-
formly from {±1}. The bounds in [1] are suited for de-
cision theoretic settings in which we attempt to minimize a
combinatorial loss function (such as the classification er-
ror) via the minimization of a dominating cost function
whose range is [0, 1]. In our case the loss function is the
classification error and the dominating cost function is the
loss LN

LM (z) defined in Eq. (12), whose range is [0,M ]. In
order to use the Rademacher bounds from [1] we need to
slightly generalize Thm. 8 of [1] to cost functions whose
range is [0,M ].
Theorem 5.1: [Bartlett and Mendelson, Thm. 8] Con-
sider a loss function L : Y × A → [0,M ] and a dominat-
ing cost function φ : Y × A → [0,M ]. Let F be a class of
functions mapping from X to A and let (Xi, Yi)

m
i=1 be in-

dependently selected according to the probability measure
P. Then, for any integer m and any 0 < δ < 1 with proba-
bility at least 1 − δ over samples of length m, every f in F
satisfies

EL(Y, f(x)) ≤ Êmφ(Y, f(x)) + Rm(φ̃ ◦ F ) + 4M

√

ln(2/δ)

2m
where φ̃ ◦ F = {(x, y) 7→ φ(y, f(x)) − φ(y, 0) : f ∈ F}.

To derive a bound for our problem, we need to bound
the Rademacher complexity of linear classifiers. Bartlett
and Mendelson proved a bound on kernel functions.
This bound can be rewritten in our setting and no-
tation as follows: Assume ||xi||2 ≤ 1 and let
F = {x 7→ λλλ · x| ||λλλ||2 ≤ B}, then R̂m(F ) ≤ 2B√

m
. In the

algorithm we assumed that ||xi||1 ≤ 1, from which follows
that ||xi||2 ≤ 1. Using standard regularization techniques
(as described in [3]) implies that ||λλλ||1 ≤ C. This means
that ||λλλ||2 ≤ ||λλλ||1 ≤ C. Combining these norm inequali-
ties, we get that in our case R̂m(F ) ≤ 2C√

m
.

We conclude by adapting the result of theorem 21 in [1] to
our setting. Using the bound M and Lipschitz constant ζ



0 1 2 3 4
0

1

2

3

4

5

p = 0.05

number of noisy quarters

T
es

t e
rr

or
 (

%
)

Boosting
LLD
LLM

0 1 2 3 4
0

2

4

6

p = 0.1

number of noisy quarters

T
es

t e
rr

or
 (

%
)

Boosting
LLD
LLM

0 1 2 3 4
0

2

4

6

8

10

p = 0.2

number of noisy quarters

T
es

t e
rr

or
 (

%
)

Boosting
LLD
LLM

0 1 2 3 4
0

5

10

15

p = 0.3

number of noisy quarters

T
es

t e
rr

or
 (

%
)

Boosting
LLD
LLM

Figure 4. Comparison of boosting, LLM and LLD on synthetic
data with different noise rates.

which were calculated in Sec. 4 for our cost function LN
LM ,

and by applying Theorem 5.1 we get,

Corollary 5.2: With probability 1− δ every f ∈ F satisfies

P (Y f(x) ≤ 0) ≤

ÊmLN
LM (Y, f(x)) + 8

ln 1−ε
ε

ln(2) + ln(1 − ε)

√

ln(4/δ)

2m
+

4B(1 − 2ε)

(ln(2) + ln(1 − ε))(1 + 2
√

ε(1 − ε))
√

m

6. Experiments

Synthetic data: In this experiment we generated 1000
random points in IR40 according to the multivariate nor-
mal distribution N(0, I). We also randomly picked a hyper
plane λλλ ∈ IR40 using the same normal distribution, and as-
signed to the i’th point the label yi = sign(λλλ · xi). We di-
vided the points into four groups according to their margin.
The groups are numbered such that the first group contains
the quarter of the points attaining the largest margin while
the fourth group contains the quarter of the points attaining
the smallest margin. We conducted five experiments. In
each experiment a different subset of the groups was con-
taminated with label noise. In the first experiment no group
was contaminated with label noise. In the second exper-
iment only the first group was contaminated with a label
noise distributed Bernoulli B(p). In the third set of experi-
ments we contaminated the first and the second group, and
so on until all four groups were contaminated with label
noise resulting in a uniform Bernoulli noise for all points.
Since we contaminated only a subset of the points, the over-
all noise rate in experiment i was p(i − 1)/4. In each ex-
perimental setup we compared the log-loss version of the
parallel boosting algorithm from [2], to the LLM algorithm
with ε set to be p, and to the LLD algorithm with µ set to
ln((1 − p)/p). To compare the performances of the algo-
rithms we generated a test set containing 1000 points. The
test set, in contrast to the train set, is noise-free. This is
compatible with our assumption, in Sec. 2.1, that the data

is actually linearly separable, but our train set was contami-
nated with label noise. We repeated this experimental setup
with four different values of p, and each experiment was re-
peated ten times. Average results are presented in Fig. 4, in
which each plot corresponds to a different value of p.

It is clear from the figure that boosting is sensitive to mali-
cious noise which flips the labels of points that attain large
margin values. This can be seen by the high increase of
error caused by the contamination of the first quarter (high
margin examples). As we contaminate the other quarters,
the increase of error becomes much smaller. In contrast,
LLM actually leverages from this type of noise. The er-
ror for LLM is very low when we contaminate only the
first two quarters. Only when the last quarter is contami-
nated, there is a significant increase in the error. Even then,
the overall error of LLM is much lower then that of boost-
ing. The error of LLD increases linearly with the amount
of contaminated quarters. Thus, LLD is less sensitive to the
margin of the outliers than boosting, yet it is not as effective
as LLM. The poor performance of boosting is not surpris-
ing – quite a few papers have formerly noted that boosting
algorithms are highly sensitive to label noise (see for in-
stance [5] and the references therein). This type of noise
however is far less crucial for LLM and LLD as it conveys
information on the examples whose labels are likely to be
incorrect. The error rate of LLM and LLD increases as the
noise becomes more uniform. Nonetheless, even with an
i.i.d Bernoulli noise, LLM and LLD exhibit a far lower test
error than boosting.

USPS: The USPS (US Postal Service) dataset is known
to be a challenging classification task particularly since its
training set and test set were collected in a different manner.
The dataset contains 7, 291 training examples and 2, 007
test examples. Each example is represented as a 16 × 16
matrix where each entry in the matrix is a pixel that can
take a value in {0, . . . , 255}. Each example is associated
with a label in {0, . . . , 9} which is the digit content of
the image. We broke the 10-class problem into 10 binary
problems. The i’th problem was to discriminate the digit
i from the rest. For each binary problem we compared the
test error of the following algorithms: log-loss boosting ,
LLM with fixed ε (at 0.08 and 0.16), LLM with variable
ε (starting from 0.08 and modified every 100 approximate
M-steps), and the LLD algorithm with µ = 4. A compar-
ative representation of these results can be seen in the left
side of Fig. 5. In this figure we show the difference be-
tween the test error (percentage wise) of boosting and the
test error of our algorithms. Each group of bars describes
the results of one of our algorithms on each of the digits.
We can see that after 100 boosting steps the LLD algorithm
is the best performing algorithm. As we increase the num-
ber of iterations LLM, especially with a fixed value for ε,
takes the charge. LLM clearly outperforms the boosting



LLM var LLM 0.08 LLM 0.16 LLD 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

E
rr

or
 a

dv
an

ta
ge

 o
ve

r B
oo

st
in

g 
(%

)
100 iterations

LLM 0.02 LLM 0.05 LLM 0.1 LLM 0.15 LLM 0.2

−0.5

0

0.5

1

1.5

2

2.5

3

E
rr

or
 a

dv
an

ta
ge

 o
ve

r B
oo

st
in

g 
(%

)

100 iterations

LLM var LLM 0.08 LLM 0.16 LLD 4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

E
rr

or
 a

dv
an

ta
ge

 o
ve

r B
oo

st
in

g 
(%

)

1000 iterations

LLM 0.02 LLM 0.05 LLM 0.1 LLM 0.15 LLM 0.2

−0.5

0

0.5

1

1.5

2

2.5

3

E
rr

or
 a

dv
an

ta
ge

 o
ve

r B
oo

st
in

g 
(%

)

1000 iterations

LLM var LLM 0.08 LLM 0.16 LLD 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Er
ro

r a
dv

an
ta

ge
 o

ve
r B

oo
st

in
g 

(%
)

10000 iterations

LLM 0.02 LLM 0.05 LLM 0.1 LLM 0.15 LLM 0.2

−0.5

0

0.5

1

1.5

2

2.5

3

E
rr

or
 a

dv
an

ta
ge

 o
ve

r B
oo

st
in

g 
(%

)

10000 iterations

Figure 5. Comparison of the LLM and LLD algorithms with var-
ious parameters to the boosting algorithm of [2]. We use the par-
allel version on the USPS dataset (left) and sequential version on
the UseNet data set (right). We show the difference between the
boosting test error and the test error of our algorithms with various
parameters.

algorithm. This may partially contributed to our margin
loss function which is less prone to outliers, as discussed in
Sec. 5. From Fig. 5 we see that LLM improves the boost-
ing result at least by a small margin, and for some digits its
error rate is lower than boosting’s by as much as 0.8%.

UseNet: This dataset consists of Usenet articles collected
by Lang [11] from 20 different newsgroups. One thou-
sand articles were collected for each newsgroup so there are
20, 000 articles in the entire collection. In our experiments
we randomly divided the articles from each newsgroup into
a training set of 750 articles and a test set of 250 articles.
The binary classification tasks we checked discriminate be-
tween articles from pairs of topics. Due to lack of space we
show the results for only four pairs of newsgroups topics.

We compared log-loss boosting with the sequential version
of LLM using single words as features. (The ith entry in
a vector representing a document is 1 if the ith word ap-
pears in the document, and is 0 otherwise.) A comparison
of the results obtained by LLM and boosting is given on
the right side of Fig. 5. When the number of rounds is 100
or 1000 then LLM often outperforms boosting. The error
rate of LLM in many cases is as much as 2% lower. As
the number of rounds gets to 10, 000 the results of LLM
and vanilla boosting become indistinguishable. One possi-
ble explanation to this type of behavior is that LLM finds
better base-hypotheses (i.e. words) than boosting due to
its improved criterion for choosing features. Alas, as the
number of rounds grows, boosting has the opportunity to
choose many features and thus close the gap. We plan to

examine this angle more thoroughly in future research.

References
[1] P. L. Bartlett and S. Mendelson. Rademacher and Gaussian

complexities: Risk bounds and structural results. COLT’01.

[2] M. Collins, R.E. Schapire, and Y. Singer. Logistic regres-
sion, AdaBoost and Bregman distances. Machine Learning,
47(2/3), 2002.

[3] O. Dekel, S. Shalev-Shwartz, and Y. Singer. Smooth
epsilon-insensitive regression by loss symmetrization.
COLT’03.

[4] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm. J.
of the Royal Statistical Society, Ser. B, 39:1–38, 1977.

[5] T. G. Dietterich. An experimental comparison of three meth-
ods for constructing ensembles of decision trees: Bagging,
boosting, and randomization. Machine Learning, 40(2),
1999.

[6] N. Duffy and D. Helmbold. Potential boosters ? NIPS’99.

[7] Y. Freund. Boosting a weak learning algorithm by majority.
Information and Computation, 121(2), 1995.

[8] Y. Freund. An adaptive version of the boost by majority
algorithm. COLT’99.

[9] Y. Freund and R. E. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting. J.
of Computer and System Sciences, 55(1), 1997.

[10] K. U. Höffgen, K. S. Van Horn, and H. U. Simon. Robust
trainability of single neurons. JCSS, 50(1), 1995.

[11] K. Lang. Newsweeder: Learning to filter netnews.
ICML’95.

[12] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Functional
gradient techniques for combining hypotheses. In Advances
in Large Margin Classifiers. 1999.

[13] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text
classification from labeled and unlabeled documents using
em. Machine Learning, 39(2/3), 2000.

[14] G. Rätsch. Robust Boosting and Convex Optimization. Doc-
toral dissertation, University of Potsdam, 2001.

[15] R. E. Schapire and Y. Singer. Improved boosting algorithms
using confidence-rated predictions. ML, 37(3), 1999.

[16] R. A. Servedio. Smooth boosting and learning with mali-
cious noise. COLT’01, EuroCOLT’01.

[17] H. Tuy. 1994. D.C. optimization: Theory, Methods & Algo-
rithms. Horst & Pardalos (Ed) Handbook of Global Opt.

[18] S. Wang, R. Rosenfeld, Y. Zhao, and D. Schuurmans. The
latent maximum entropy principle. In IEEE International
Symposium on Information Theory, 2002.

[19] X. Zhang X.Shen, G. C. Tseng and W. H. Wong. On psi-
learning.i. J. of American Statistical Association, 2003.


