A Comparative Study on Methods for Reducing Myopia of
Hill-Climbing Search in Multirelational Learning

Lourdes Pena Castillo
Otto-von-Guericke-University Magdeburg, Germany

Stefan Wrobel

Fraunhofer AIS and University Bonn, Germany

Abstract

Hill-climbing search is the most commonly
used search algorithm in ILP systems because
it permits the generation of theories in short
running times. However, a well known draw-
back of this greedy search strategy is its my-
opia. Macro-operators (or macros for short),
a recently proposed technique to reduce the
search space explored by exhaustive search,
can also be argued to reduce the myopia
of hill-climbing search by automatically per-
forming a variable-depth look-ahead in the
search space. Surprisingly, macros have not
been employed in a greedy learner. In this pa-
per, we integrate macros into a hill-climbing
learner. In a detailed comparative study in
several domains, we show that indeed a hill-
climbing learner using macros performs sig-
nificantly better than current state-of-the-art
systems involving other techniques for reduc-
ing myopia, such as fixed-depth look-ahead,
template-based look-ahead, beam-search, or
determinate literals. In addition, macros, in
contrast to some of the other approaches, can
be computed fully automatically and do not
require user involvement nor special domain
properties such as determinacy.

1. Introduction

Multirelational learning or inductive logic program-
ming (ILP) (Dzeroski & Lavra¢, 2001) is a subfield of
machine learning concerned with inducing concept def-
initions using a first-order representation. Typically,

Appearing in Proceedings of the 21°% International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

PENA@IWS.CS.UNI-MAGDEBURG.DE

WROBEL@AIS.FRAUNHOFER.DE

ILP systems take as input background knowledge B,
positive examples £+ and negative examples E~, and
have to find a clausal theory (set of rules) T" which is
used to classify future examples. The systems’ task is
to find a theory T which minimizes the classification
error on future instances.

In multirelational learning, performing exhaustive
search can be too inefficient because the hypothesis
space of most multirelational learning problems can
be very large. Consequently, search strategies which
only consider a limited number of alternatives at each
level of the search are typically applied. Among these
search strategies, hill-climbing search (often also called
greedy search), which takes only one (the best) alter-
native at each level, is the most commonly used search
algorithm in ILP (Firnkranz, 1999). However, a well
known problem of hill-climbing search is its myopiq;
i.e., the search algorithm might be unable to correctly
assess the quality of a refinement and end up with a
non-optimal clause.

Hill-climbing’s shortsightedness occurs because hill-
climbing search does not consider the existence of non-
discriminating relations and the inability of the eval-
uation function to deal properly with literals denot-
ing this kind of relations. For example, consider the
eastward trains domain where the learning task is to
find a theory to classify the trains according to their
traveling direction (east or west). One of the rela-
tions in this domain is the structural relation between
one train and its cars denoted by the predicate has-
Car/2. Since hasCar is a non-discriminating relation
(i.e., every train has one or more cars), literals having
hasCar as predicate are not useful to distinguish be-
tween examples of trains belonging to different classes.
However, they introduce a new reference to a car (i.e.,
a new variable) in a clause. The problem with these
literals is that the evaluation value of clauses contain-
ing hasCar as their last literal is low, and thus they

are not selected by hill-climbing. In this case, hill-
climbing search may end up with a non-optimal clause
or hit a dead end. The fact that hill-climbing cannot
“see” that hasCar combined with other literals may
yield a solution is called myopia.

In this paper, we integrate macro-operators, which
have recently been shown to reduce the search space
explored by exhaustive search (Pefa Castillo & Wro-
bel, 2002), in a hill-climbing learner and empirically
show that a greedy system using macros performs sig-
nificantly better than current systems involving other
techniques for reducing myopia.

Macros are based on provider-consumer iterations of
existential variables between the literals; a macro-
based refinement operator refines a clause by adding
macros instead of single literals. The benefit derived
from macros in hill-climbing is that the evaluation
function is only applied to admissible clauses, which
has the advantage that the quality of these clauses
can be more accurately assessed since they have dis-
criminative power and can be a solution. For exam-
ple, in the case of the eastward trains domain, literals
with the predicate hasCar would never be added to
a clause without a consumer of hasCar’s output vari-
ables. Since a consumer of hasCar is always added,
the evaluation function is able to appropriately esti-
mate the relevance of the refinement. Using macros,
the number of literals added at once to a clause are
automatically adjusted so that only admissible clauses
are generated.

In addition, we present the first detailed compara-
tive study on approaches to reduce the myopia prob-
lem of hill-climbing search in multirelational learning.
This study involves fixed-depth look-ahead, template-
based look-ahead, beam-search, determinate literals
and macros. Our results show that, with the exception
of beam-search, a hill-climbing learner using macros
reports significantly lower classification error than sys-
tems using other approaches.

The next section describes a hill-climbing search algo-
rithm and illustrates its shortsightedness. In Section 3,
we briefly explain look-ahead, beam-search and deter-
minate literals. Section 4 explains macros and how
they reduce hill-climbing’s myopia problem. Section 5
describes our experiments, work related to macros is
surveyed in Section 6, and Section 7 concludes.

2. Myopia of Hill-Climbing Search

With the purpose of having a search algorithm able to
perform various search strategies, we formulate Algo-
rithm 1. This algorithm performs a top-down search

Top_Down_Search
Input: The top of the lattice T, B, E, b, s
Output: Either a clause C or §)

1. S={T} /* Ordered set of clauses to consider*/
2. While a clause D € S can be refined and search
resources are not exhausted
(a) R =0 /* Set of refinements */
(b) For every clause D € S that can be refined

i. W= | p4(D) /*Refining D */
ii. R= fcé d \)\%
(¢) Sort R according to eval
(d) Let Ry be the best b refinements in R
(e) S = Rb
3. Let C be the best evaluated clause in S
4. If C covers enough positive and few enough nega-
tive examples in E
(a) Then Return C
(b) Else Return ()

Algorithm 1: A top-down search algorithm

and uses an example to guide the search for hypoth-
esis. It receives two user-defined parameters, s and
b, which indicate the amount of look-ahead and the
beam width, respectively. The default values, s = 1
and b = 1, correspond to hill-climbing search. In Al-
gorithm 1, p4(C) is the set of clauses obtained after
d-step refinements of some clause C.

To evaluate the quality of a clause C;, Algorithm 1 uses
the evaluation function shown in Equation 1 which is
based on the information gain heuristic (Fiirnkranz &
Flach, 2003). In Equation 1, pos; and neg; are the
number of positive and negative examples covered by
Ci; |[ET| and |E~| are the total number of positive
and negative examples, respectively; |C;| the number
of body literals in C; (or 1 if C;’s body is empty); T
refers to the unit clause at the top of the refinement
lattice, and IC(C) returns the information content of

a clause, which is given by IC(C;) = —loga (5,255 -)-

05, E~ |—neg;
P e + (IC(T) = 1C(C) Q)
ICil '

eval(C;) =

To illustrate the myopia problem of hill-climbing using
Algorithm 1, consider the student loan domain (Paz-
zani & Brunk, 1991) where the learning task is to find a
theory to classify individuals into those who are not re-
quired to pay back an educational loan and those who
must pay. Assume that we set the maximum length of
the clauses to four body literals and that the bottom

C=no_payment_due(A)—
{232,292} -0.52

C,=no_payment_due(A)«1.
{109,143} -0.02

C,=no_payment_due(A)«<2.
{232,292} 0.0

{C=no_payment_due(A)«3.
Lo 42302674003 |

C,=no_payment_due(A)«4.
{230,267} 0.03

D‘: no_payment_due(A)«—1,3. Df no_payment_due(A)«2,3. D,=no_payment_due(A)«<3.4.
{230,267} 0.02

{108,132} 0.01 {230,267} 0.02

=no_payment_due(A)<3,
A21921510.05 !

D =no_payment_due(A)«3.8.
{54,125} -0.12

?E‘= no_payment_due(A)—1,3,5. E =no_payment_due(A)<23,5. E,=no_payment due(A)—34,5. E=no_payment_due(A)—3.58.

Lo {109,994004 i

{219,215} 0.03

{219,215} 0.03 (22,52} -0.09

F =no_payment_due(A)<1,2,3,5. F=no_payment_due(A)—13,4,5.
104,99} 0.03 104,99} 0.03

F,=no_payment_due(A)—1,3,58.

{15,29} -0.05

Figure 1. Search space explored by hill-climbing. Below each clause C;, pos; and neg; are shown between braces followed
by C;’s heuristic value obtained by Equation 1. A square encloses the clause chosen by hill-climbing at each iteration.

no_payment_due(A) <-- -1- male(4),
-2- longest_absence_from_school(A,IO0),
-3- enrolled(A,U1,I1), -4- enrolled(A,U2,I2),
-5- gte(I1,3), -6- gte(I0,4), -7- gte(I2,9),
-8- 1te(I1,3), -9- 1te(I0,4), -10- 1te(I2,9).

Figure 2. Bottom clause L for the student loan example

clause (see Figure 2) is derived from a given example
e. The bottom clause L is used to guide the search for
a solution and as lower bound of the search space.

In the bottom clause shown in Figure 2, the numbers
which precede the literals indicate the position of each
literal in | and we use them to refer to the literals.

Let us explain how Algorithm 1 works. In the first
iteration, after step 2b, the set R contains four re-
finements of the clause C =no_payment_due(A)«—
(these refinements are Cy,...,Cq4 in Figure 1). There
are only four refinements at the first level because the
hypothesis language does not allow clauses with un-
bound input variables. From these refinements, Cs
and C, are the best evaluated clauses by Equation 1.
Assume that, in step 2d, C3 is chosen. Then, after
three more iterations, hill-climbing hits a dead end
with three clauses in S which cannot be refined (Fi,
Fo and F3 in Figure 1), and since F; does not sat-
isfy the criterion in step 4, the algorithm returns .
Hill-climbing fails to find a solution because the liter-
als 2, 3 and 4 do not have discriminative power and
the evaluation function is unable to correctly assess
their quality when added by themselves to a clause.
The refinements which lead to a solution in this ex-
ample are Co and C4 and the solution is the clause
no_payment_due(A) «— 24,7.9.

3. Reducing Hill-Climbing’s Myopia

Before reviewing the various approaches used in ILP to
alleviate the myopia of greedy systems, we introduce
some terminology to describe these techniques.

As proposed by Pena Castillo and Wrobel (2002), lit-
erals can be classified in providers and consumers. A
literal p is a consumer of literal ¢ if p has at least one
input variable bound to an output argument value of
q; conversely, q is a provider of p. Notice that these
relations apply as well to the head literal. A literal pro-
viding the value for an output argument of the head
literal is a head provider, and a body literal is a head
consumer if it consumes an input argument value of
the head. A literal is a dependent provider if it intro-
duces existential variables to a clause and if for every
combination of ground bindings of its input variables
there is at least one ground binding for each of its
output variables. In this sense, dependent providers
represent non-discriminating relations (e.g., hasCar).

3.1. Beam-search

Some ILP systems, such as m-FOIL (Dzeroski &
Bratko, 1992) and ICL (De Raedt & Van Laer, 1995),
mitigate the myopia problem of hill-climbing search by
performing beam-search. Beam-search considers the b
best refinements at each level, where b (1 < b < 00) is
the beam width. With a value of b greater than one in
Algorithm 1, beam-search is obtained. Because beam-
search considers the best b refinements, the proba-
bility of including the refinement that yields a so-
lution increases with respect to hill-climbing search;
however, beam-search also disregards the existence of
dependent providers. Beam-search relies on domain-
dependent tuning of the beam width, which could be

time-consuming and might not yield optimal results.

3.2. Fixed-depth Look-ahead

Fixed-depth look-ahead is used in several ILP systems
and consists in allowing the system to evaluate clauses
which are s or less refinement steps further. By set-
ting the parameter s with a value z (x > 1) in Algo-
rithm 1, z-step look-ahead is performed. That means
that step 2(b)ii adds to R the set of all refinements W
obtained by x or less applications of p to D.

Employing x-step look-ahead has the drawback that
non-admissible clauses (e.g. clauses which contain a
dependent provider as the last literal such as C3 in Fig-
ure 1) are considered. As described in the introduc-
tion, the evaluation function cannot adequately esti-
mate the value of such clauses. Furthermore, as shown
in Section 5.2, fixed-depth look-ahead may incur in sig-
nificantly longer run times without gain in accuracy.

3.3. Template-based Look-ahead

Template-based look-ahead relies on user-defined tem-
plates to perform a selective look-ahead (e.g., re-
lational clichés by Silverstein and Pazzani (1991)
and TILDE’s look-ahead by Blockeel and De Raedt
(1997)). A drawback of this approach is that the tem-
plates have to be hand-written by the user; basically,
the user has to provide a template for every provider-
consumer match. In addition, the system can, but
does not have to, use the templates provided to refine
a clause and by doing this, non-admissible clauses are
considered.

3.4. Determinate Literals

Determinate literals (Quinlan, 1991) work as follows.
In a first step, all determinate literals are added to the
clause to be refined. In a second step, refinements con-
taining consumers of these literals are evaluated, and
the best one is selected. Finally, all determinate liter-
als without a consumer are removed from the clause.

Determinate literals are the subset of dependent
providers which are uniquely satisfied by all the ex-
amples. Determinate literals’ approach requires deter-
minacy in the application domain. This domain prop-
erty implies that there must be a one to one mapping
between input and output argument values in the liter-
als. However, determinacy is not a property present in
many application domains. For example, in the east-
ward trains domain, a train can have multiple cars,
or in the mesh design domain, a node has multiple
neighbours.

4. Macros in Hill-Climbing Search

In this section, we first review macros and then explain
how they are used with hill-climbing search.

4.1. Macro-operators

Macros were introduced by Pena Castillo and Wrobel
(2002) as a formal approach to reduce the search space
(when using exhaustive search) defined by a down-
ward refinement operator without further restricting
the hypothesis space. Macros are based on provider-
consumer relations between the literals. In addition to
dependent providers, macros introduce the concept of
dependent consumers, where a dependent consumer is
a literal which has at least one input argument value
provided exclusively by dependent providers. A macro
is then either a literal which is neither a dependent
provider nor a dependent consumer, or a subsequence
of literals with at least one consumer for every depen-
dent provider in the subsequence. A subsequence of
literals contains a subset of the literals in the bottom
clause.

A macro-based refinement operator refines a clause by
adding macros instead of single literals and only gener-
ates admissible clauses. Admissible clauses are clauses
which do not contain unneeded literals! and are also
called legal subsequences of literals. Macros are auto-
matically created based on a list of (user declared or
automatically determined) dependent providers. The
macros construction algorithm we use differs from the
one presented in (Pena Castillo & Wrobel, 2002) in
the generation of macros with more than one depen-
dent provider.? By employing a macro-based refine-
ment operator (ppr) in step 2(b)i of Algorithm 1, we
obtain macro-based hill-climbing.

4.2. Hill-climbing with Macros

Let us illustrate how macros alleviate the myopia prob-
lem of hill-climbing using again the student loan do-
main. In this domain, literals having as predicate
either longest_absence_from_school or enrolled
are dependent providers. Based on these dependent
providers, seven macros are obtained using the bot-
tom clause listed in Section 2. These seven macros are
MSet = {17 [Qa 6]7 [27 9]7 [3v 5]7 [3’ 8]; [4v 7]7 [4’ 10]}3

As depicted in Figure 3, in the first iteration, macro-
based hill-climbing evaluates all the refinements al-

! An unneeded literal can be removed from a clause with-
out affecting the clause‘s coverage and consistency.

2This complete and correct algorithm for constructing
macros is given in Pefa Castillo (2004).

3Recall that the literals are referred with the number
corresponding to their position in L (see Figure 2).

C=no_payment_due(A)—

{232,292} -0.52

C =no_payment_due(A)«—1.
{109,143} -0.02

C=no_payment_due(A)«2,9.
114,92} 0.10
C,=no_payment_due(A)«<2,6.
164,219} -0.01

D]: no_payment_due(A)«—1,4,7.
(42,25} 0.10

DZZ no_payment_due(A)«2,4,6,7.
198,57} 0.08

CSZ no_payment_due(A)<3,8.

C,=no_payment_due(A)<3,5.
{219,215} 0.05

Df no_payment_due(A)«3,4,5,7.

D,=no _payment_dus(A)2,4,7,9.

{28,03.0.18

C,=no_payment_due(A)«—4,10.
{169,235} -0.02

{54,125} -0.12

no_payment_due(A)—4,

D = no_payment_due(A)«4,7,10.
(18,201 0.02
{98,571 0.08

D =no_payment_due(A)—3,4,7,8.
{15,10} 0.06

Figure 3. Search space explored by macro-based hill-climbing. A square encloses the clause chosen at each iteration.

lowed by the hypothesis language which are obtained
by adding to C =no_payment_due(A)« the gener-
ated macros. From those refinements, Cg obtains the
highest heuristic value and is selected in step 2d. In the
second iteration, in step 2b, Cg is refined by adding the
available macros, and in step 2d, D3 is selected. Since
D3 cannot be further refined, the algorithm terminates
and returns D3, which is a solution and is then added
to the final theory.

Macros alleviate hill-climbing’s myopia problem be-
cause Equation 1 is applied to clauses whose quality
can be more accurately assessed because they have
discriminative power and can be a solution. By us-
ing macros, an automatically adjusted variable-depth
look-ahead is performed where only admissible clauses
are considered.

5. Empirical Evaluation

In this section we empirically analyze the performance
of the approaches described above in terms of classifi-
cation error and run time. We carried out experiments
on the following application domains.

1. Chess moves. This dataset contains 180 positive
and 17 negative examples of valid chess moves for
five pieces, and the learning task is to learn what
are the correct moves for those pieces.

2. Eastbound trains. The system has to determine
the direction (east or west) of trains based on their
attributes. This dataset contains 42 positive and
19 negative examples.

3. Student loan (Pazzani & Brunk, 1991). This
dataset consists of 643 positive and 357 negative
examples. The learning task is to discriminate
between individuals who are not required to pay

back an educational loan and those who must pay.

4. Mutagenesis (Srinivasan et al., 1996). This is an
ILP benchmark dataset with 188 compounds (125
positive and 63 negative examples). The mutage-
nesis problem deals with the prediction of the mu-
tagenic activity of small, heterogeneous molecules.

5. Mesh design (Dolsak et al., 1998). Stresses in
physical structures are analyzed by approximat-
ing the structures with a mesh model. The task is
to determine the appropriate number of elements
N on an edge. The data contains information
about the edges of ten different structures.

6. Traffic problem detection (Dzeroski et al., 1998).
This dataset has 256 examples of traffic situations
in road sections, which have to be classified as
accident, congestion or non-critical section.

We used 5-fold-cross-validation for the first three
datasets, 10-fold-cross-validation for mutagenesis and
traffic, and cross-validation-leave-one-out for mesh.

5.1. Results Summary

In our experiments, hill-climbing with macros
(MioGM), hill-climbing, fixed-depth look-ahead and
beam-search were performed using Algorithm 1.
For determinate literals and template-based look-
ahead, we carried out experiments with FOIL (Quin-
lan & Cameron-Jones, 1995) version 6.4 and with
TILDE (Blockeel & De Raedt, 1998) contained in
ACE 1.1.15. To provide a comparison with exhaustive
search, we also included Progol (Muggleton, 1995) in
the experiments.* We defined the templates needed

by TILDE to perform look-ahead based on the macros

4The settings and mode declarations used for MioGM,
TILDE and Progol are available on request; for FOIL the
defaults values were used.

]
.
0.2

_ 2 v Point Approach Run | Error

g s 5 " Time

w ¢ 67 89 A T Hill-climbing - 76s 0.217

5 o oo 2 Beam-search (b=5) 135s 0.171

= 3 Fixed-depth L-ahead (s=2) 171s 0.164

o 4 MioGM - 175s 0.171

k7 5 Beam-search (b =20) 390s 0.158

R 6 Beam-search (b=80) 1514s | 0.143

[$) 7 MioGM (s=2) 1598s | 0.144
8 Beam-search (b=160) | 2990s | 0.143
9 MioGM (s=3) 3096s | 0.142
10 Fixed-depth L-ahead (s=3) 4336s | 0.175
11 Fixed-depth L-ahead (s=4) 6362s | 0.151

0 T T T T T
0 1000 2000 3000 4000 5000
Run time (s)

Figure 4. Average classification error and running times across all six datasets using MioGM, hill-climbing, fixed-depth

look-ahead and beam-search.

Table 1. Win-loss-tie comparison between MioGM and the
other approaches in terms of the no. of domains with a
significant (a = 0.05) difference in accuracy

MioGM vs Win-loss-tie
TILDE (template-based) 3-0-3
Progol (exhaustive search) 4-0-2
FOIL (det. literals) 5-0-1
Hill-climbing 5-0-1
Fixed-depth L-ahead (s = 2) 2-0-4
Beam-search (b = 80) 0-0-6

created by MioGM. This was done for every dataset
except for mutagenesis and mesh where the templates
recommended by the author of TILDE were used.
MioGM was run with look-ahead (s = 2).

Table 1 shows a win-loss-tie accuracy comparison be-
tween MioGM and all the other approaches®. This Ta-
ble shows that MioGM is more accurate than all the
other approaches but beam-search, with 0.95% statis-
tical significance. Next we analyze in detail our em-
pirical results.

5.2. Comparing Macros, Fixed-depth
Look-ahead and Beam-Search

To compare macros, fixed-depth look-ahead and beam-
search, we ran MioGM and Algorithm 1 with different
values for the parameters b and s. Figure 4 reports
the results obtained by MioGM with s set to 1, 2 and
3, and b to 1; and Algorithm 1 with eight different
parameter settings: using hill-climbing (s = 1 and b =

5This table contains the results obtained using fixed-
depth look-ahead (s = 2) and beam-search (b = 80), which
are the best settings according to Section 5.2.

1), with 2, 3 and 4-step look-ahead (s =2...4and b =
1), and using beam-search with various beam widths
(s =1 and b = 5,20,80,160).

Figure 4 shows the average classification error across
all six datasets obtained by each parameter setting.
The horizontal line at 0.162 represents the average
classification error of all settings reported. The ta-
ble on the right of Figure 4 shows the values of the
data points.

In the experiments, hill-climbing (see data point 1 in
Figure 4) has, as we expected, the highest classifica-
tion error. The lowest classification error is obtained
using macros with look-ahead (data points 7 and 9)
and beam-search with the beam width set to 80 and
160 (data points 6 and 8). However, beam-search has
the drawback that the beam width has to be tuned by
trial-and-error. In our case, we tried in total six dif-
ferent beam width values for every application domain
(only four are reported in Figure 4).

Increasing the amount of fixed-depth look-ahead be-
yond two (points 10 and 11) does not pay off because
of the long running times and the marginal decrease
in classification error. In addition, the behaviour of
beam-search and macros is more stable than that of
fixed-depth look-ahead since there is no descent in ac-
curacy and no oversearching occurs when the beam
width or the amount of look-ahead is increased.

5.3. Comparing MioGM to Existing Systems

As Figure 5 and Table 2 show, the classification error
of MioGM is lower than that of TILDE, FOIL and
Progol, with mesh being an exception, where TILDE
obtains the lowest error. According to a t-significance
value of a = 0.005, MioGM’s accuracy is statistically

Classification Error

0.05
Fh i .
0 ¢ i L

i i i i i
Chess Student-loan Trains Traffic Mutagenesis
Dataset

gl
Mesh

Figure 5. Classification error of Progol (left), FOIL (2nd
bar), TILDE (3rd bar), and MioGM (right) per dataset

Table 2. Average error per system per dataset

Dataset | Progol | FOIL | TILDE | MioGM
Chess 0.023 0.082 0.118 0.005
S.Loan 0.003 0.018 0.084 0.000
Trains 0.231 0.197 0.146 0.049
Traffic 0.077 0.088 0.074 0.058
Mutag. 0.144 0.186 0.171 0.138
Mesh 0.810 0.814 0.564 0.612
Table 3. Average run time per system per dataset
Dataset | Progol | MioGM | TILDE | FOIL
Chess 1.2s 4.6s 1.1s 0.8s
S.Loan 17s 7.1s 1.6s 24.7s
Trains 54s 100s 0.2s 0.1s
Traffic 182s 113s 2.8s 1.7s
Mutag. 1h18m 48m 18.6s 2.2s
Mesh 13h55m 1h48m 35.3s 9.1s

higher than that of FOIL in the chess, student loan,
trains, and mesh design domains. MioGM’s accuracy
is statistically higher than that of TILDE in the chess,
student loan, and trains datasets. Finally, MioGM’s
accuracy is statistically higher than that of Progol in
the trains, student loan, and mesh datasets. Thus,
macros significantly improve accuracy compared with
template-based look-ahead (TILDE) and determinate
literals (FOIL), and obtain an average accuracy which
positively compares with that obtained by exhaustive
search (Progol).

Table 3 shows the average run time on a 500 MHz
Sun Blade 100 (128MB of RAM) of Progol, MioGM,
TILDE and FOIL per dataset. One can see that
macros represent a significant improvement in accu-
racy with respect to the other systems, and they attain
a middle place in terms of running time between the
exhaustive system Progol and systems such as TILDE

or FOIL. There is reason to believe that MioGM’s
longer running times are in part due to implementa-
tion issues: MioGM is implemented in Java and uses
a Java-SICStus Progol interface (Jasper) to execute
all Prolog code; while FOIL is implemented in C and
TILDE is implemented in ilProlog which is a built-in
high performance Prolog system with special features
for ILP. To determine the impact of the implementa-
tion, we executed a single query to obtain the cov-
erage of the same clause using TILDE and MioGM.
TILDE takes on average 0.01s to execute this query,
while MioGM takes 0.10s. Generating the macros is a
minor time overhead since, on average, it takes 0.1 mil-
liseconds to automatically construct a macro and 130
macros are generated per covering iteration. Hence,
macros are not the efficiency bottleneck of the system.

6. Work Related to Macros

The definition of macros may seem similar to k-local
clauses, a language bias proposed by Cohen (1995). In
this bias, only clauses of locality k& or less are consid-
ered, where the locality of a clause is the size of the
largest set of literals which contain either a free (local)
variable X or some free variable influenced by X (this
set is called the locale of X). However, contrary to the
clauses generated by a macro-based refinement opera-
tor, a k-local clause might not be a legal subsequence of
literals, and thus it does not need to be considered be-
cause it cannot be a solution. For example, suppose we
search for 3-local clauses. In this case, a clause whose
body consists of one dependent provider is considered.
However, such a clause is not admissible. Macros, on
the other side, does not generates these clauses.

Another work reminiscent of macros is first-order
feature construction for individual-centered domains
by Lavra¢ and Flach (2001). This approach is used in
1BC (Flach & Lachiche, 1999) to restrict the search
space, and in LINUS and RSD (Lavrag et al., 2003) to
propositionalize input data with nondeterminate lit-
erals. In both approaches, feature construction and
macros, the key idea is to use provider-consumer re-
lations of existential variables among the literals as
basis to construct the features or, respectively, the
macros. Structural predicates in first-order features are
binary predicates similar to structural literals defined
by Zucker and Ganascia (1998) but structural predi-
cates relax the condition of transitivity. Macros’ de-
pendent providers relax in addition the requirement of
antisymmetry. Macros extend first-order feature con-
struction by allowing head providers and n-ary depen-
dent providers. In addition, macros, contrary to first-
order features, are also suitable for non-individual-
centered domains or for program synthesis tasks.

7. Conclusions

In this paper, we showed that a learner using hill-
climbing search with macro-operators (MioGM) ex-
hibits significantly lower classification error than other
greedy systems using other techniques such as fixed-
depth look-ahead, template-based look-ahead, or de-
terminate literals. In addition, macros are automati-
cally computed, are less sensitive to domain-dependent
tuning of parameters, and do not require determinacy
in the application domain.

As future work, we plan to compare hill-climbing us-
ing macros with stochastic hill-climbing which is also
used to reduce the myopia problem of greedy learn-
ers (Firnkranz, 1999).

Acknowledgments

We thank Oscar Meruvia for many valuable sugges-
tions. The second author was partially supported by
the German Science Foundation, projects WR40/1-3
and WR40/2-1.

References

Blockeel, H., & De Raedt, L. (1997). Lookahead and
discretization in ILP. Proc. of the 7th Int. Workshop
on ILP (pp. T7-84).

Blockeel, H., & De Raedt, L. (1998). Top-down induc-
tion of first order logical decision trees. Artificial
Intelligence, 101, 285—-297.

Cohen, W. W. (1995). Pac-learning non-recursive Pro-
log clauses. Artificial Intelligence, 79, 1-38.

De Raedt, L., & Van Laer, W. (1995). Inductive con-
straint logic. Proc. of the 6th Conf. on Algorithmic
Learning Theory (pp. 80-94).

Dolsak, B., Bratko, 1., & Jezernik, A. (1998). Appli-
cation of machine learning in finite element compu-
tation. Machine learning and data mining: methods
and applications, 147-171.

Dzeroski, S., & Bratko, I. (1992). Handling noise in
inductive logic programming. Proc. of the 2nd Int.
Workshop on ILP.

Dzeroski, S., Jacobs, N., Molina, M., Moure, C., Mug-
gleton, S., & Laer, W. V. (1998). Detecting traffic
problems with ILP. Proc. of the 8th Int. Conf. on
ILP (pp. 281-290).

Dzeroski, S., & Lavra¢, N. (2001). Introduction to
inductive logic programming. In S. Dzeroski and
N. Lavra¢ (Eds.), Relational data mining, 48-73.

Flach, P., & Lachiche, N. (1999). 1BC: A first-order
Bayesian classifier. Proc. of the 9th Int. Workshop
on ILP (pp. 92-103).

Firnkranz, J. (1999). Separate-and-conquer rule
learning. Artificial Intelligence Review, 13, 3—54.

Filirnkranz, J., & Flach, P. (2003). An analysis of rule
evaluation metrics. Proc. of the 20th ICML (pp.
202-209).

Lavra¢, N.; & Flach, P. (2001). An extended trans-
formation approach to inductive logic programming.
ACM Transactions on Computational Logic, 2, 458—
494.

Lavrac, N., Zelezny, F., & Flach, P. (2003). RSD: Re-
lational subgroup discovery through first-order fea-
ture construction. Proc. of the 12th Int. Conf. on
ILP (pp. 149-165).

Muggleton, S. (1995). Inverse entailment and Progol.
New Generation Computing, 13, 245-286.

Pazzani, M. J., & Brunk, C. A. (1991). Detecting
and correcting errors in rule-based expert systems:
an integration of empirical and explanation-based
learning. Knowledge Acquisition, 3, 157-173.

Pefia Castillo, L. (2004). Search improvements in mul-
tirelational learning. Doctoral dissertation, Otto-
von-Guericke-University Magdeburg.

Pena Castillo, L., & Wrobel, S. (2002). Macro-
operators in multirelational learning: a search-space
reduction technique. Proc. of the 13th ECML (pp.
357— 368).

Quinlan, J. R. (1991). Determinate literals in inductive
logic programming. Proc. of the 12th IJCAI (pp.
746-750).

Quinlan, J. R., & Cameron-Jones, R. M. (1995). In-
duction of logic programs: FOIL and related sys-
tems. New Generation Computing, 13, 287-312.

Silverstein, G., & Pazzani, M. J. (1991). Relational
clichés: constraining constructive induction during
relational learning. Proc. of the 8th Int. Workshop
on Machine Learning (pp. 203-207).

Srinivasan, A., Muggleton, S., King, R. D., & Stern-
berg, M. J. E. (1996). Theories for mutagenicity:
a study of first-order and feature based induction.
Artificial Intelligence, 85, 277-299.

Zucker, J.-D., & Ganascia, J.-G. (1998). Learning
structurally indeterminate clauses. Proc. of the 8th
Int. Conf. on ILP (pp. 235-244).

