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Abstract

Inductive learning of first-order theory based
on examples has serious bottleneck in the
enormous hypothesis search space needed,
making existing learning approaches perform
poorly when compared to the propositional
approach. Moreover, in order to choose the
appropiate candidates, all Inductive Logic
Programming (ILP) systems only use quan-
titive information, e.g. number of examples
covered and length of rules, which is insuf-
ficient for search space having many similar
candidates. This paper introduces a novel
approach to improve ILP by incorporating
the qualitative information into the search
heuristics by focusing only on a kind of data
where one instance consists of several parts,
as well as relations among parts. This ap-
proach aims to find the hypothesis describ-
ing each class by using both individual and
relational characteristics of parts of exam-
ples. This kind of data can be found in vari-
ous domains, especially in representing chem-
ical compound structure. Each compound is
composed of atoms as parts, and bonds as
relations between two atoms. We apply the
proposed approach for discovering rules de-
scribing the activity of compounds from their
structures from two real-world datasets: mu-
tagenicity in nitroaromatic compounds and
dopamine antagonist compounds. The re-
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sults were compared to the existing method
using ten-fold cross validation, and we found
that the proposed method significantly pro-
duced more accurate results in prediction.

1. Introduction

Inductive Logic Programming (ILP) is a learning ap-
proach which incorporates first-order logic to induc-
tive learning. This knowledge representation provides
comprehensibility in learning results and capability to
handle more complex relational data which is difficult
to be denoted using only the propositional represen-
tation. Yet, the richer, first-order representation gen-
erates huge space of possible hypotheses. Moreover,
the existing ILP approaches use only quantitative in-
formation in order to select an appropriate candidate,
i.e. using only a number of training examples covered
without considering the quality of the examples cov-
ered. This makes the existing ILP approaches some-
times perform poorly compared to propositional ap-
proaches. In order to improve performance in predic-
tive accuracy, we introduce a novel technique focusing
on a kind of data called multiple-part data, i.e., one
instance of data consists of several parts, as well as
relations among parts. The objective of learning from
multiple-part data is to find the hypothesis for describ-
ing class of each example by using characteristics of its
part individually, as well as characteristics of relations
among parts.

Though the existing first-order theory learning ap-
proaches can handle this kind of data because of the
power of first-order representation, there is still limi-
tation in the efficiency of the results, since the search



space becomes larger and contains the similar hypoth-
esis candidates due to the numerous parts within one
example. Thus, the search heuristics using only quan-
titative information cannot lead to good hypotheses.
In order to solve this problem, we incorporate qualita-
tive information to the search heuristics by weighing
each part, based on its characteristics correlating to
parts from other examples in the same class. This gives
the parts with common characteristics higher weights
than the uncommon parts, and helps search heuristics
discriminate more efficiently. This weighing technique
derives from the concept of multiple-instance learning,
which is an extended two-class propositional learning
approach for the data that cannot be labelled individ-
ually, albeit several instances of data are gathered and
labelled as a group. Each positive group may consist
of both positive and negative instances. Nevertheless,
the multiple-instance learning aims to learn to predict
instances not groups, thereby rendering itself similar
to supervised learning where there are noisy examples
in the positive examples. Most of the learning algo-
rithms for multiple-instance data solve this ambiguity
by using the similarity of data within the feature space
in order to find the area in the feature space where
several instances from various positive groups are lo-
cated together and that this area is far from negative
group instances. This method is modified and used
as the weighing technique to evaluate each part of the
multiple-part data containing similarity among parts
before incorporating the weights into search heuristics
to find the hypothesis that may consist of relations
among parts.

In order to evaluate the proposed approach, we em-
ployed it to learn rules predicting activities of chem-
ical compounds using their structure. The problem
comes from the studies of Structure-Activity Relation-
ship (SAR) aimed at finding the structure in chemi-
cal compounds describing their characteristics or ac-
tivities. The knowledge discovered will be useful for
developing new drugs. In recent years, the advance
in High Throughput Screening (HTS) technology has
produced vast amount of SAR data. Therefore, once
the rules to predict the activities of existing SAR data
is found, it will significantly help the screening process.
The SAR data, which is represented by chemical com-
pound structure, can be categorized as multiple-part
data. Since we aim to find the substructure that can
predict the activity of a compound, we apply the pro-
posed system to learn the hypotheses from this kind of
data. We also compared the learning result with the
previous approaches in order to evaluate performance
of the proposed system.

This paper is organized as follows. Section 2 describes

FOIL and the multiple-instance learning which are the
basic ideas for this research, and Section 3 explains
the proposed approach to improve the learning per-
formance. In Section 4, the experiments conducted
on two real-world datasets are described and the ex-
periment results are compared to the previous ILP
approaches. We then consider the related works in
Section 5. Finally, we summarize and conclude this
research and consider our future directions in Section
6.

2. Background
2.1. FOIL

FOIL (Quinlan, 1990) is a top-down ILP system for
learning function-free Horn clause definitions of a tar-
get predicate using background predicates. The learn-
ing process in FOIL starts with training examples con-
taining all positive and negative examples, constructs
a function-free Horn clause (a hypothesis) to cover
some of the positive examples, and removes the cov-
ered examples from the training set. Next, it continues
to search for the next clause. When the clauses cov-
ering all the positive examples have been found, they
are reviewed to eliminate any redundant clauses and
re-ordered so that all recursive clauses follow the non-
recursive ones.

FOIL uses a heuristic function based on the informa-
tion theory for assessing the usefulness of a literal.
It provides effective guidance for clause construction.
The purpose of this heuristic function is to character-
ize a subset of the positive examples. From the partial
developing clause below
R(Vl,VQ,. . .,Vk) — Ll,Lg,. . ,Lm—l

the training examples covered by this clause are de-
noted as T;. The information required for 7; is given
by

T

I(T)) = —logy ——+ 1
&) B T, ]

(1)

If a literal L,, is selected and yields a new set T;11,
then the similar formula is given as

73]

I(Tiy1) = —log, m
1+ 1+

(2)

From the above, a heuristic used in FOIL is calculated
as an amount of information gained when applying a
new literal L,,;

Gain(L;) = [T | x (I(T3) = I(Tix1)) (3)



Ti++ in this equation is the positive example extended
in CB;Jrl.

This heuristic function is used over every candidate
literal and the literal with the largest value is selected.
The algorithm will continue until the generated clauses
cover all positive examples.

2.2. Multiple-Instance Learning

In the supervised learning problem, we tried to design
and create the algorithms that are able to generate
the model from the training examples, in order to pre-
dict correct labels of unseen data, and each instance of
the training examples has to be labelled beforehand.
However, this framework may not be suitable for some
applications. Dietterich et al. (1997) proposed the ex-
tended framework for the supervised learning to han-
dle more ambiguities called Multiple-Instance Learn-
ing. In this new framework, unlabelled instances are
grouped into a bag labelled as positive or negative. If
a bag is positive, it means that the bag contains at
least one positive instance; otherwise that bag would
be labelled as negative. From this set-up, the tar-
get concept can be found from the area in the feature
space, where the instances from various positive bags
gather together.

After this framework and algorithm were presented,
various approaches were proposed, some of which
extend the existing supervised learning algorithm
(Chevaleyre & Zucker, 2001; Gértner et al., 2002).
Maron and Lozano-Pérez (1998) proposed the origi-
nal approach for multiple-instance learning using Di-
verse Density (DD). This approach is applied in the
proposed system. This is followed by explanation of
detail.

DIVERSE DENSITY

The Diverse Density (DD) algorithm aims to measure
a point in an n-dimensional feature space for multiple-
instance domains. The DD at point p in the feature
space shows how many different positive bags have an
instance near p, and how far the negative instances
are from p. Thus, the DD value is high in the area
where instances from various positive bags are located
together, and is rather far from instances from negative
bags. It can be calculated as

H(l - H(l — exp(—| B — x|*))) -
[ITI0 = eap(=1B5 =) ()

DD(z) =

where  is a point in the feature space and B;; rep-

resents the j* instance of the i'” bag in training ex-
amples. For the distance, the Euclidean distance is
adopted

IBij — @l> = > _(Bijk — ) (5)

k

In the previous approaches, several searching tech-
niques were proposed for determining the value of fea-
tures or the area in the feature space maximising DD
value.

3. The Proposed Method

We present the top-down ILP system that is able to
learn hypotheses more efficiently from the set of ex-
amples in which each example consists of several small
parts, or when trying to predict class of data from the
common substructure. The proposed system incorpo-
rates the existing top-down ILP system (FOIL) and
applies the multiple-instance based measure to find the
common characteristics among parts of positive exam-
ples. This measure is then used as a weight attached
to each part of the example, so that the common parts
among positive examples are attached with the high-
valued weights. With these weights and the heuristic
function based on example coverage, the system gener-
ates more precise and higher coverage hypotheses from
the training examples. Next, Multiple-part data will
be defined, followed by explanation of the modified
heuristics.

3.1. Multiple-part Data

In this section, we define the multiple-part data, as
well as the multiple-part learning problem on which
this research focuses.

The multiple-part data is the data consisting of several
components. Moreover, there are also relations among
parts. In order to make the explanation easier to un-
derstand, we explain the multiple-part data using the
example of chemical compound structure data which
will be used in the experiments. From the chemical
structure, each chemical compound or molecule repre-
sents one instance of multiple-part data. It consists
of several atoms as parts as well as bonds which are
relations between two atoms. Using the first-order rep-
resentation, each compound can be denoted by using
two predicates:

o atom(Compound-ID, Atom-ID, Element) for an
atom.

e bond(Compound-ID, Atom-IDy, Atom-IDs, Type)



atom(cl,a2,c)
atom(cl,a4,c)
atom(cl,a6,c)
bond(cl1,a2,a3,2)
bond(cl,a4,ab,2)
bond(cl,a6,al,2)

atom(cil,al,c)
atom(cl,a3,c)
atom(cil,ab,c)
bond(cl,al,a2,1)
bond(c1,a3,a4,1)
bond(cl,a5,a6,1)

Figure 1. Examples of multiple-part data

for a bond.

Figure 1 shows the example of a chemical compound
and its representation. We use Compound-ID and
Atom-ID to identify each compound and each atom. A
bond is a relation consisting of two atoms (Atom-ID;
and Atom-IDs). Moreover, we also include features
to characterize atoms and bonds, which are Element,
and Type. These features are useful for categorizing
the atoms and bonds.

The multiple-part learning problem aims to find hy-
potheses describing the label or class of data from
the substructure or the subset of parts. For exam-
ple, in the case of chemical compound data, we want
to find the substructure of the compound that is com-
mon among compounds with the same label or class,
such as a group of atoms and bonds including their
features. This problem is different from the traditional
supervised learning that aims to predict class from the
whole characteristics of data, such as predicting class
of compound from its weight or some special value
computed. Other real-world data can be categorized
as multiple-part data, e.g. each time point in time-
series data can be considered as a part with relations
among parts, such as before and after.

3.2. Modified Heuristic Function

The heuristic function is used to control the way the
algorithm explores hypothesis space. This function
based on the information theory that counts the num-
ber of positive and negative tuples covered by the par-
tially developing clause are used in FOIL (formula 1
and 3). With this, FOIL selects the literal that cov-
ers many positive tuples but few negative tuples. In
order to help heuristics select better literals, we ap-
ply the DD value to each tuple, and we have to adapt

the heuristic function, so that the parts with high DD
values are selected first, making the hypothesis cover
the common characteristics among parts from positive
examples.

From formula 1, 7, and 7}~ denote the set of positive
and negative tuples respectively, as the DD value can
be used to show the importance of the part of data by
representing each instance of multiple-part data as a
bag and each part as an instance in the bag. We then
incorporate these to the heuristic function by altering
|T:7| to be the sum of the DD values of tuple. If this
sum is high, it means that the literal can cover more
common parts among positive examples. Thus, the
heuristic function is adapted as follows:

DDy(T) = Y DD(T;) (6)
T.eT
DD(T}")
I(T;) —log, DD(T;") + |1 | "
Gain(L;) = DD,(T;"") x (I(T;) — I(Ti+1)) (8)

This function is similar to weighing each part with the
DD value and using the sum of these weights to select
the literal, while the original heuristic function weighs
all parts with the same value as 1. Nevertheless, we
still use the number of negative tuples |T; | in the same
way as the original heuristics, since we know that all
parts of negative examples show the same strength.
Therefore, it is similar to weighing all negative parts
with value 1.

From the above function, there is still one problem left
to be considered. This problem occurs when the learn-
ing algorithm tries to select relation among parts as a
literal. Selecting the relations makes each tuple con-
sist of more than one part, such as the system trying
to append a bond into the clause, which makes each
tuple contain two atoms. We then have to select the
weight to represent each tuple from the DD value of
the parts. We solve this problem by simply selecting
the average DD value in the tuple as the weight of
the tuple. The reason that we select the average value
is that the proposed method aims to cover the tuples
with high weight values.

3.3. Algorithm

From this modified function, we implement the proto-
type system called FOILMP (FOIL for Multiple-Part
data). This system basically uses the same algorithm
as proposed in (Quinlan, 1990). Nevertheless, in order
to construct accurate hypotheses, the beam search is
applied so that the algorithm maintains a set of good
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FindBestRule(Examples, Remaining)
e Initialize Beam with an empty rule.

e Do

— NewBeam «— {}
— For each clause C' in Beam
* Generate Candidates by adding all possible
literals to C.
* For each new clause nC in Candidates
- Calculate heuristic of nC using DD values.
- Append nC to NewBeam.
— Beam <« Best BeamWidth clauses in NewBeam

— R « Best clause in Beam

e Until Accuracy(R) > € and PositiveCoverage(R) > ~

e Return R

- J

Figure 2. The algorithm for finding the best rule from the
remaining positive examples.

candidates instead of selecting the best candidate at
that time. This searching method makes the algorithm
possible to backtrack to the right direction and finally
get to the goal. Moreover, in order to obtain rules
with high coverage, we define the coverage ratio, and
the algorithm is set to select only the rules covering
positive examples higher than that ratio. The mod-
ified subroutine for selecting rules is shown in figure
2. There are two user-defined parameters: e for the
minimum accuracy and « for the minimum positive
example coverage.

4. Experiments

We conducted the experiments on two datasets for
SAR: Mutagenesis and Dopamine antagonist data. In
order to evaluate the performance of the proposed
system, these experiments were conducted in ten-fold
cross validation, and we compared the results to the
existing approaches.

4.1. Data

In this research, we aim to discover rules describing the
activities of chemical compounds from their structures.
Two kinds of SAR data were studied: the mutagene-
sis data (Srinivasan et al., 1994) and the dopamine
antagonist data.

The mutagenesis data is used to test mutagenicity in
nitroaromatic compounds, which are often known to
be carcinogenic and also cause damage to DNA. These
compounds occur in automobile exhaust fumes and are
also common intermediates used in chemical industry.
In this dataset, 230 compounds were obtained from

the standard molecular modeling package QUANTA.
Two predicates (atm and bond) are used to denote
each compound:

e atm(comp, atom, element, type, charge), stating
that there is the atom atom in the compound
comp that has element element of type and partial
charge charge.

e bond(comp, atoml1, atom?2, type), describing that
there is a bond of type between the atoms atoml
and atom?2 in the compound comp.

The background knowledge in this dataset is already
formalized in the form of the multiple-part data, and
thus, no preprocessing is necessary.

The dopamine antagonist dataset describes each com-
pound as atoms and bonds when the compound is
plotted in the 3-dimensional area. Each atom is rep-
resented by element type and its position in the 3-
dimensional area. Each bond is represented by two
atoms and bond type. From this information, it can
be seen that the position of atom has no meaning,
since a compound can be plotted in many different
ways. Therefore, the positions are not used directly
but are used for computing length of bond between
atoms. Hence, after preprocessing, the background
knowledge consists of two kinds of predicate.

e atom — element type (such as, C for Carbon, N
for Nitrogen, O for Oxygen), position when it is
plotted in 3D space (X, Y, and Z).

e bond — two atoms that are linked by the bond,
bond type which can be 1 for a single bond, or 2
for a double bond.

To convert information above into predicates, we first
found that the position (X, Y, and Z) in 3D space
has no meaning, since we can rotate and re-plot the
compound and it makes the position of atoms changed
to other values. We then used the position of atom to
compute length of bond which is a fixed feature not
related to moving or rotating. Two predicates were
generated:

e atm(compound, atom, element)— stating an atom
atom in compound compound with element ele-
ment.

e bond(compound, atoml, atom2, bondtype, length)
— describing a bond bond in compound compound.
This bond links atom atomI and atom atom?2 to-
gether with type bondtype and length length.



However, after discussion with the domain expert, we
found that excepting bond, there are as well other
kinds of link whose energy is not so strong as bond but
it is frequently important to identify the compound
structure. Therefore, we add another predicate in or-
der to show this kind of information and call it link as
below.

e link(compound, atoml, atom2, length) — describ-
ing a relation link in compound compound. It links
atom atoml! and atom atom2 with length length.

Finally, three kinds of predicate are used in the back-
ground knowledge. Nevertheless, there is only one fea-
ture to characterize each atom, that is, element type.
This would not be enough to compute DD value if we
use element type only. It means that we can sepa-
rate dopamine antagonist compound by checking only
elements included in that compound. Therefore, we
need to add other features to characterize each atom.
After discussing with the domain expert, the other fea-
tures based on basic knowledge in chemistry are added:
number of bonds linked to an atom, average length of
bonds linked to an atom, connection to oxygen atom,
minimum distance to oxygen and nitrogen.

Most of features are related to oxygen and nitrogen
because the expert said that the position of oxygen
and nitrogen has an effect to the activity of dopamine
antagonist. Hence, the predicate atm is modified
to atm(compound, atom, element, number-bond, avg-
bond-len, o-connect, o-min-len, n-min-len).

Although, the proposed method can handle only two-
class data (only positive or negative), there are four
classes for the dopamine antagonist compounds, how-
ever. Then, hypotheses for each class are learned by
the one-against-the-rest technique, for instance, learn-
ing class D1 by using D1 as positive examples and
D2,D3,D4 as negative examples.

4.2. Experiment Results and Discussion

For the mutagenesis data, we first compare the per-
formance of FOILMP using all data consisting of 125
compounds for the positive class and 63 compounds for
the negative class. In this experiment, the beam search
strategy is applied in FOILMP by setting the beam size
= 1 (hill-climbing search) and 3 subsequently. In this
and following experiments, we set 0.9 for the minimum
accuracy, and 0.1 for the minimum coverage. The re-
sults are compared to the existing results described in
(Srinivasan et al., 1994). Figure 3 shows the perfor-
mance tables.

From the performance tables, even FOILMP with hill-

Predicted Predicted
active  inactive active  inactive
active 100 25 125 active 114 11 125
Actua Actual
inactive 13 50 63 inactive 8 55 63
113 75 188 122 66 188
(a) PROGOL (b) Regression
(Srinivasan et al., (Srinivasan et al.,
1994) 1994)
Predicted Predicted
active inactive active inactive
active 100 25 125 active 109 16 125
Actud Actual
inactive 7 56 63 inactive 8 55 63
107 81 188 117 s 188
(c) FOILMP (d) FOILMP

(beam size=1) (beam size=3)

Figure 3. Performance tables for Mutagenesis Data com-
paring FOILMP to PROGOL and the regression technique.

climbing search strategy learns from this dataset bet-
ter than PROGOL(Muggleton, 1995) with accuracy
83.0% for FOILMP and 79.8% for PROGOL. When
compared to the regression technique based on the
model called logM (Srinivasan et al., 1994), FOILMP
with the beam size = 3 still showed worse performance
than the regression model that predicts at 89.9%,
whereas FOILMP predicts at only 87.2%. However,
these experimental results still shows the advantage of
FOILMP since the human expert is needed to choose
the useful features to construct the model in order to
use the regression model, and the results are based on
those features, which are difficult to be comprehended
by other chemists.

Table 1 shows the experiment results on Mutagenesis
data. The prediction accuracy on test examples us-
ing ten-fold cross validation is compared to the exist-
ing approaches (FOIL and PROGOL). The proposed
method predicts more accurately than the existing ap-
proaches.

For Dopamine Antagonist data, we conducted ten-fold
cross validation to predict D1, D2, D3, and D4 activ-
ities. However, we compared the experimental results
with Aleph (Srinivasan, 2001), since PROGOL cannot
generate accurate rules from this dataset in reasonable



Table 1. Ten-fold cross validation test comparing the accu-
racy on Mutagenesis data

Approach Accuracy
The proposed method 0.82
PROGOL 0.76
FOIL 0.61

time. Aleph is an ILP system based on inverse en-
tailment and similar algorithm with PROGOL. How-
ever, Aleph has adopted several search strategies, such
as randomized search which helps improve the perfor-
mance of the system. In this experiment, we set Aleph
to use GSAT (Selman et al., 1992), which is one of the
randomized search algorithms where the best results
can be generated. Table 2 shows the prediction accu-
racy computed for both positive and negative exam-
ples, and then, for only the positive examples. The
table also shows the results of significance test using
a one-paired t-test. The experiment results show that
FOILMP predicts more accurately than Aleph in both
accuracy computation methods. The significance tests
also show the confidence level in the difference between
accuracy. Figure 4 shows the details of the rules ob-
tained by FOILMP. We also found that FOILMP gen-
erates rule with higher coverage than Aleph where the
rule covers 36.5% of positive examples.

5. Related Work

In recent years, from the merits of ILP, there are many
works proposed to learn from chemical compound
structure data using ILP (Srinivasan et al., 1994; Srini-
vasan et al., 1996; Finn et al., 1998; Marchand-Geneste
et al., 2002). These works proposed different kinds of
background knowledge in order to discover the sub-
structure of a molecule responsible for its activity.

King et al. (1995) has discussed whether propositional
learner or ILP is better for learning from chemical
structure. Actually, the first-order representation can
denote chemical structure without losing any informa-
tion, since denoting the relational data like chemical
structure data using propositional logic is beyond its
limit. Therefore, some special techniques are needed,
such as for relations among parts. We may use only
average value of features in that relation or use the
domain-related knowledge to compute a new feature
in order to help categorize. However, a learner us-
ing first-order representation performs worse than a
propositional learner, since there are still some restric-
tions from the logic theory in ILP learners. However,
using accuracy comparisons only may not be good as

~

Rule 1

di(A) :- atm(A,B,C,D,E,F), E>=3.7, F=3.
bond(A,L,B,H,M,N), bond(A,G,H,
K=1.5, bond(A,0,B,P,Q,R),
not_equal (H,P).

3,
I,J’K),

Accuracy = 93.2%  Coverage = 47.6%

This rule shows the molecule contains an atom B with
the minimum distance to oxygen is greater or equal
to 3.7, and the minimum distance to nitrogen is 3.3.
From B, there are two bonds to two different atoms (H
and P). Moreover, there is another bond from H to I
with bond length is equal to 1.5.

Rule 2

d1(A) :- atm(A,B,C,D,E,F), F=3.0, E>=3.9,

bond(A,G,B,H,I,J), J<1.4.
Accuracy = 93.8%  Coverage = 10.3%
This rule is similar to Rule 1 that there is one atom

with specified minimum distance to oxygen and nitro-
gen. But there is only one bond with length less than

1.4.

N /

Figure 4. Rules obtained by FOILMP using data for D1
activity.

assessment, since the chemist’s natural inclination is
related to chemical structure, and the learning results
from ILP is comprehensible to chemists.

Okada (2002) proposed the cascade model which can
be considered an extension of association rule mining.
In this approach, itemset lattice, is represented in the
form of substructure pattern similar to the chemical
structural formula. This system discovers some in-
teresting rules, due to the co-occurrence of chemical
structures among positive compounds. There is a lim-
itation from using the propositional logic that the sub-
structure has to be generated prior to testing for rule
construction.

6. Conclusion and Future Works

We have presented the extension of FOIL for handling
multiple-part data more efficiently by using Diverse
Density from multiple-instance learning, in order to
evaluate parts, so that the parts with common charac-
teristics among positive examples have high weights.
This enables the searching process to generate bet-
ter results. We conducted the experiments on chemi-
cal compound data for structure-activity relationship
studies. The experiment results showed that the pro-



Table 2. Ten-fold cross-validation test comparing the accuracy on dopamine antagonist data; Superscripts denote confi-
dence levels for the difference in accuracy between FOILMP and Aleph, using a one-paired t-test: * is 95.0%, ** is 99.0%;

no superscripts denote confidence levels below 95%.

Activity FOILwMmP Aleph
Accuracy(%) Accuracy(%)  Accuracy(%) Accuracy(%)
(overall) (only positive) (overall) (only positive)
D1 97.0 85.5 96.0* 78.6%*
D2 88.1 79.1 86.4* 70.5%
D3 93.4 78.4 93.1 75.1%
D4 88.4 85.1 87.6% 83.2%

posed method predicts the test examples more accu-
rately than earlier ILP approaches.

For future work, the scaling factor of these features
should be considered in heuristic value calculation, so
that the system can produce more suitable heuristics
from training data. Moreover, the current system uses
only bonds as relations between atoms. We are planing
to improve background knowledge by exploring more
complex substructure of a molecule and evaluating the
proposed system on other domains.
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