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Abstract tion (Theocharous et al., 2001), audio-visual speech recog-

nition (Nefian et al., 2002), activity recognition (Bui et al.,

In sequence modeling, we often wish to repre-
sent complex interaction between labels, such
as when performing multiple, cascaded label-
ing tasks on the same sequence, or when long-
range dependencies exist. We presgyriamic
conditional random fields (DCRFsha general-
ization of linear-chain conditional random fields
(CRFs) in which each time slice contains a set
of state variables and edges—a distributed state
representation as in dynamic Bayesian networks
(DBNs)—and parameters are tied across slices.
Since exact inference can be intractable in such
models, we perform approximate inference us-
ing several schedules for belief propagation, in-
cluding tree-based reparameterization (TRP). On
a natural-language chunking task, we show that
a DCRF performs better than a series of linear-
chain CRFs, achieving comparable performance
using only half the training data.

2002), and information extraction (Skounakis et al., 2003;
Peshkin & Pfeffer, 2003).

DBNs are typically trained to maximize the joint probabil-

ity p(y,x) of a set of observation sequencesind labels

y. However, when the task does not require being able
to generatex, such as in segmenting and labeling, mod-
eling the joint distribution is a waste of modeling effort.
Furthermore, generative models often must make problem-
atic independence assumptions among the observed nodes
in order to achieve tractability. In modeling natural lan-
guage, for example, we may wish to use features of a word
such as its identity, capitalization, prefixes and suffixes,
neighboring words, membership in domain-specific lexi-
cons, and category in semantic databases like WordNet—
features which have complex interdependencies. Genera-
tive models that represent these interdependencies are in
general intractable; but omitting such features or modeling
them as independent has been shown to hurt accuracy (Mc-
Callum et al., 2000).

A solution to this problem is to model instead the condi-
. tional probability distributiorp(y|x). The random vector
1. Introduction x can include arbitrary, non-independent, domain-specific

The problem of labeling and segmenting sequences deature vari_ables. Because the mo_del is conditional, the
observations arises in many different areas, including/€Péndencies among the featurescido not need to be
bioinformatics, music modeling, computational linguistics, exPlicitly represented. Conditionally-trained models have
speech recognition, and information extraction. DynamicP€€n shown to perform better than generatively-trained
Bayesian networks (DBNs) (Dean & Kanazawa, 1989:models on many tasks, including documgnt cIaSS|f|cat|or_1
Murphy, 2002) are a popular method for probabilistic se-(Taskar etal., 2002), part-of-speech tagging (Ratnaparkhi,
quence modeling, because they exploit structure in thd996), extraction of data from tables (Pinto et al., 2003),
problem to compactly represent distributions over multi-S€égmentation of FAQ lists (McCallum et al., 2000), and
ple state variables. Hidden Markov models (HMMs), announ-phrase segmentation (Sha & Pereira, 2003).

important special case of DBNs, are a classical method foggnditional random fields (CRFs) (Lafferty et al., 2001)

speech recognition (Rabiner, 1989) and part-of-speech tagye undirected graphical models that are conditionally
ging (Manning & Sclitze, 1999). More complex DBNS trained. Previous work on CRFs has focused on the linear-
have been used for applications as diverse as robot naviganain structure, depicted in Figure 1, in which a first-order
Markov assumption is made among labels. This model
structure is analogous to conditionally-trained HMMs, and
has efficient exact inference algorithms. Often, however,
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we wish to represent more complex interaction between
labels—for example, when longer-range dependencies exy,,
ist between labels, when the state can be naturally repre-
sented as a vector of variables, or when performing mul- @ 0 @ \
tiple cascaded labeling tasks on the same input sequence @
(which is prevalent in natural language processing, such as

part-of-speech tagging followed by noun-phrase segmenta-
part & & &

In this paper, we introdud@ynamic CRFs (DCRFsyvhich

are a generalization of linear-chain CRFs that repeat Strucrjg,re ;. Graphical representation of (a) linear-chain CRF, and
ture and parameters over a sequence of state vectorstn) factorial CRF. Although the hidden nodes can depend on ob-

allowing us to represent distributed hidden state and comservations at any time step, for clarity we have shown links only
plex interaction among labels, as in DBNs, and to us&o observations at the same time step.

rich, overlapping feature sets, as in conditional models.
For example, the factorial structure in Figure 1(b) includes . , .
links between cotemporal labels, explicitly modeling lim- tion 3, we define DCRFs, and explain methods for approx-
ited probabilistic dependencies between two different labelMate inference and parameter estimation. In section 4, we
sequences. Other types of DCRFs can model higher-ordé’rrese”t the experimental results. We conclude in section 5.
Markov dependence between labels (Figure 2), or incorpo-
rate a fixed-size memory. For example, a DCRF for part-of2. CRFs
speech tagging could include for each word a hidden state
that is true if any previous word has been tagged as a vertconditional random field§CRFs) (Lafferty et al., 2001)

) i i are undirected graphical models that encode a conditional
Any DCRF with multiple state variables can be collapsed,) o apijity distribution using a given set of features. CRFs
into a linear-chain CRF whose state space is the Crossye gefined as follows. Let be an undirected model over

product of the outcomes of_the original state variab_lesSets of random variablgsandx. As a typical special case,
However, such a linear-chain CRF needs exponentlall)s, = [y} andx = {z;} fort = 1,...,T, so thaty is a

many parameters in the number of variables. Like DBNS1abeIing of an observed sequence If C' = {{y.,x.}}
DCRFs represent the joint distribution with fewer parame-iq ihe set of cliques i, then CRFs define the conditional

ters by exploiting conditional independence relations.  opapility of a state sequence given the observed sequence
Within natural-language processing, DCRFs are especiallS: 1

attractive because they are a probabilistic generalization of pA(Y|X) = —— H D(ye, Xc), (1)
cascaded, weighted finite-state transducers (Mohri et al., Z(x) ccC

2002). In general, many sequence-processing problems ajghere d is a potential function and the partition function
traditionally solved by chaining errorful subtasks such asy () — >y [Teec ®(¥e. x.) is a normalization factor

cessing nearly' always cascadg through the chain, causinge potentials factorize according to a set of featyrgs,
errors in the final output. This problem can be solvedyhich are given and fixed, so that

by jointly representing the subtasks in a single graphical

model, both explicitly representing their dependence, and

preserving uncertainty between them. DCRFs can repre- O(yesxc) = exp (Z )‘k’f’f(yc’xc)> @)
sent dependence between subtasks solved using finite-state k

transducers, such as phonological and morphological analfhe model parameters are a set of real weights {\; },
ysis, POS tagging, shallow parsing, and information extracene weight for each feature.

tion. . o . . . :
Previous applications use tlieear-chain CRFE in which

We evaluate DCRFs on a natural-language processing task. first-order Markov assumption is made on the hidden
Afactorial CRF that learns to jointly predict parts of speechvariables. A graphical model for this is shown in Fig-
and segment noun phrases performs better than cascade@ 1. In this case, the cliques of the conditional model
models that perform the two tasks in sequence. Also, ware the nodes and edges, so that there are feature functions
compare several schedules for belief propagation on thigy (y;_1, y:,x,t) for each label transition. (Here we write
task, showing that although exact inference is feasible, apthe feature functions as potentially depending on the entire
proximate inference has lower total training time with noinput sequence.) Feature functions can be arbitrary. For
loss in performance. example, a feature functiofy. (y:—1, v, x, t) could be a bi-
The rest of the paper is structured as follows. In section Zpary test that has value 1 if and onlyy_, has the label
adjectivé, y, has the label groper nouri, and x; begins

we describe the general framework of CRFs. Then, in sec-". '
with a capital letter.



Factorial Hierarchical

Figure 2. Examples of DCRFs. The dashed lines indicate the boundary between time steps.

3. Dynamic CRFs

3.1. Model Representation

DCRFs generalize not only linear-chain CRFs, but more
complicated structures as well. For example, in this paper,
we use afactorial CRF (FCRF) which has linear chains

A Dynamic CRF is a conditionally-trained undirected of labels, with connections between cotemporal labels. We

graphical model whose structure and parameters are r&@me these after factorial HMMs (Ghahramani & Jordan,
peated over a sequence. As with a DBN, a DCRF can bé997). Figure 1(b) shows an unrolled factorial CRF. Con-
specified by a template that gives the graphical structureider an FCRF with chains, wheré, , is the variable in
features, and weights for two time steps, which can thefgh&in/ at timet. The clique indices for this DCRF are of
be unrolled given an instance The same set of features the form{(0, £), (1, £)} for each of the within-chain edges

and weights is used at each sequence position, so that tR&d{(0, £), (0,£+1)} for each of the between-chain edges.

parameters are tied across the network. Several examplg'® FCRFG defines a distribution over hidden states as:

templates are given in Figure 2.

T—-1 L

Now we give a formal description of the unrolling process.

1
Lety = {yi...yr} be a sequence of random vectors p(ylx) = Z(x) (H H@f(y&“y&tﬂvxi))
yi = (i1 -..vim). TO give the likelihood equation for ar- t=1 =1
bitrary DCRFs, we require a way to describe a clique in the T Ll
unrolled graph independent of its position in the sequence. H H Wo(ye,t, Yey1,e,%,t) |, (4)
t=1 (=1

For this purpose we introduce the concept afligue in-
dex Given a timel, we can denote any variabyg; in y by

two integers: its indey in the state vectoy;, and its time  where{®,} are the potentials over the within-chain edges,

offsetAt =i — ¢t. We will call a setc = {(At, j)} of such
pairs a clique index, which denotes a set of varialgles
by yi.c = {yr+ar,j | (At,j) €c}. Thatis,y, . is the set of
variables in the unrolled version of clique indeat timet.

Now we can formally define DCRFs:

Definition Let C' be a set of clique indicesF

{fx(y¢.c,x,t)} be a set of feature functions afd= {\}

be a set of real-valued weights. Theti, F, A) is a DCRF
[ ew

if and only if
( ) o
t ceC

whereZ(x) = 37 [1; [L.coexp Ok M fu(yie, X, 1)) IS
the partition function.

Z /\kfk(Yt,ca X, t)

p(ylx) = ﬁ
k

Although we define a DCRF has having the same set o

features for all the cliques, in practice, we choose featur<=e

functions f;, so that they are non-zero except on cliques
with some index;,. Thus, we will sometimes think of each
clique index has having its own set of features and weight
and speak of, and)\;, as having an associated clique index
Ck-

{¥,} are the potentials over the between-chain edges, and
Z(x) is the partition function. The potentials factorize ac-
cording to the feature§f; } and weight{\;} of G as:

}

More complicated structures are also possible, such as
semi-Markov CRFs, in which the state transition probabil-
ities depend on how long the chain has been in its current
state, and hierarchical CRFs, which are moralized versions
f the hierarchical HMMs of Fine et al. (1998)As in

BNs, this factorized structure can use many fewer param-
ters than the cross-product state space: even the two-level
FCRF we discuss below uses less than an eighth of the pa-

Z )‘k‘fk (y€7t7 Yer+1,X, t)
k

Z )\kfk?<y€,t7 Yo+1,t, X, t)

k

(I)K(yf,t’ Yet+1,X, t) = exXp {

Uo(ye,t, Yey1,e, X, t) = exp {

Srameters of the corresponding cross-product CRF.

'Hierarchical HMMs were shown to be DBNs by Murphy and
Paskin (2001).



3.2. Inference in DCRFs edges in random order. To improve convergence, we arbi-
trarily order each edge; = (s;,t;) and send all messages

s; (t;) before any messages,, (s;). Note that for a graph
with V' nodes and? edges, TRP send3(V') messages per
BP iteration, while the random schedule setd€”) mes-
sages.

Inference in a DCRF can be done using any inferenc
algorithm for undirected models. For an unlabeled se
guencex, we typically wish to solve two inference prob-
lems: (a) computing the marginals(y, .|x) over all

cliquesy: ., and (b) computing the Viterbi decoding =

arg maxy p(y|x). The Viterbi decoding is used to label a To perform Viterbi decoding, we use the same propaga-
new sequence, and marginal computation is used for pdion algorithms, except that the summation in Equation 5
rameter estimation (Section 3.3). is replaced by maximization. Also, the algorithms that
. L . .. we have described apply to DCRFs with at most pairwise
Because marginal computation is needed during tralr“r?gcliques. Inference in DCRFs with larger cliques can be per-
inference must be efficient so that we can use large g med straightforwardly using generalized versions of the

ing sets even if there are many Iabe_ls. Th_e Igrgest EXPEIariational approaches in this section (Yedidia et al., 2000;
ment reported here required computing pairwise margmaIWaimNright 2002)

in 866,792 different graphical models: one for each train-
ing example in each iteration of a convex optimization al- S

gorithm. Since exact inference can be expensive in coms-3: Parameter Estimation in DCRFs
plex DCRFs, we use approximate methods. Here we dethe parameter estimation problem is to find a set of
scribe approximate inference using loopy belief propagaparametersA = {);} given training dataD =
tion. {x® y@N . More specifically, we optimize the con-
Although belief propagation is exact only in certain spe-ditional log-likelihood

cial cases, in practice it has been a successful approximate @) 1 ()

method for general graphical models (Murphy et al., 1999; L(A) =) logpaly™ [ x™). )

Aji et al., 1998). In general, belief propagation algorithms ¢
iteratively update a vectan = (m,(z,)) of messages be-
tween pairs of vertices,, andx,. The update from:, to

x, IS given by:

oL _ (1) (i)
ma(e,) =3 @) [[ mi@), 6 akangk(yt,mx 1)
To TLF£Ty ! ) ) (8)
S oG | XD) fi(frer xD, 1),

bt e

The derivative of this with respect to a parametgrasso-
ciated with clique index is

where®(z,,, z,) is the potential on the edde,, ). Per- Z
forming this update for one edde,,, x,) in one direction !
is calledsending a messageom z,, to z,,. Given a mes-
sage vectom, approximate marginals are computed as

Whereyjtfi> is the assignment tg; . in y(*), andy; . ranges

over assignments to the cliqyg .. Observe that it is the

7: . | x() that requires us to compute marginal
P(T0, 1) — KB (g, 2,) my () me(z,),  factorpa(g. | x™) that req P 9
H H probabilities in the unrolled DCRF.

T FTy TwF Ty

. o 6 To reduce overfitting, we define a pripfA) over parame-
wherer is a normalization factor. ters, and optimizéog p(A|D) = L£(A) + log p(A). We use
At each iteration of belief propagation, messages can ba spherical Gaussian prior with mean= 0 and covariance
sent in any order, and choosing a good schedule can afatrix¥ = 21, so that the gradient becomes
fect how quickly the algorithm converges. We describe two
schedules for belief propagation: tree-based and random. M — 875 _ ﬁ
The tree-based schedule, also known as tree reparameteri- O o\, o2
;Z)?élggggtgsL]((g\ézgg\;/\g;ggroentga;,sze?%lf,c\?(l)aslgvgﬂ?tihntézs%%?ﬁisee Peng and McCallum (2004) for a comparison of differ-
trees of the original graph. At each iteration of TRP, a span-gHt priors for linear-chain CRFs.
ning tree7 () ¢ Y is selected, and messages are sent irrhe functionp(A|D) is convex, and can be optimized by
both directions along every edgedr?), which amountsto  any number of techniques, as in other maximum-entropy
exact inference o (V). In general, trees may be selected models (Lafferty et al., 2001; Berger et al., 1996). In the
from any setl = {7} as long as the trees i cover the results below, we use L-BFGS, which has previously out-
edge set of the original graph. In practice, we select treeperformed other optimization algorithms for linear-chain
randomly, but we select first edges that have never beeGRFs (Sha & Pereira, 2003; Malouf, 2002).

in any previ iteration. .
used in any previous iteratio The analysis above was for the fully-observed case, where

The random schedule simply sends messages across #ike training data include observed values for all variables in



S Size CRF+CRF Brill+CRF FCRF
™ . 223 86.23 93.12
© 7 447 90.44 95.43
9 o | POS accuracy 670 92.33 N/A 96.34
5 ° 894 | 93.56 96.85
S g 4 2234 96.18 97.87
g 8936 | 98.28 98.92
5 & 223 92.67 93.75 93.87
T o I 447 94.09 94.91 95.03
=] A NP accuracy| 670 | 94.72 95.46 | 95.46
g I . CRE+CRE 894 95.17 95.75 | 95.86
2234 96.08 96.38 96.51
% 8936 96.98 97.09 97.36
I I I I 223 81.92 89.19
2000 4000 6000 8000 447 86.58 91.85
Joint accuracy| 670 88.68 N/A 92.86
Number of training instances 894 90.06 93.60
2234 93.00 94.90
Figure 3. Performance of FCRFs and cascaded approaches on 8936 95.56 96.48
noun-phrase chunking, averaged over five repetitions. The error ii? ggg‘; gggé gggg
bars on FCRF and CRF+CRF indicate the range of the repetitions. NPEL| 670 88.19 89.65 89.64
894 89.21 90.31 90.55
2234 91.07 91.90 92.02
the model. If some nodes are unobserved, the optimization 8936 93.10 93.33 93.87

problem becomes more difficult, because the log likelihoodrypje 1. Comparison of performance of cascaded models and
is no longer convex in general (details omitted for space). FCRFs on simultaneous noun-phrase chunking and POS tag-
ging. The row CRF+CREF lists results from cascaded CRFs, and
Brill+CRF lists results from a linear-chain CRF given POS tags
from the Brill tagger. The FCRF always outperforms CRF+CRF,
We present experiments comparing factorial CRFs to otheand given sufficient training data outperforms Brill+CRF. With
approaches on noun-phrase chunking (Sang & Buchholzmall amounts of training data, Brill+CRF and the FCRF perform

2000). Also, we compare different schedules of loopy be<comparably, but the Brill tagger was trained on over 40,000 sen-
lief propagation in factorial CRFs. tences, including some in the CoNLL 2000 test set.

4. Experiments

4.1. Noun-Phrase Chunking
redicts NP labels using the POS labels provided from the
rill tagger, which we expect to be more accurate than
those from our CRF, because the Brill tagger was trained

each word as either B5IN-PHRASE, INSIDE-PHRASE, or - . .
OTHER (Ramshaw & Marcus, 1995). The task is typically ocrgjlt\)l\llir;))térotltrgzssrgtore data, including sentences from the

performed by an initial pass of part-of-speech tagging, but

then it can be difficult to recover from errors by the tagger.The factorial CRF uses the graph structure in Figure 1(b),
In this section, we address this problem by performing partwith one chain modeling the part-of-speech process and the
of-speech tagging and noun-phrase segmentation jointly inther modeling the noun-phrase process. We use L-BFGS
a single factorial CRF. to optimize the posterigi(A|D), and TRP to compute the

marginal probabilities required byL/0\;. Based on past
Our data comes from the CoNLL 2000 shared task (San%xperience with linear-chain CRFs, we use the prior vari-

& Buchholz, 2000), and consists of sentences from the 5

Wall Street Journal annotated by the Penn Treebank proje&ncea = 10 for all models.
(Marcus et al., 1993). We consider each sentence to be\We factorize our features asfy(yi.c,z,t) =
training instance, with single words as tokens. The data arg (y..)gx(x,t) where pg(y:.) is a binary function
divided into a standard training set of 8936 sentences andn the assignment, ang.(x,t) is a function solely of

a test set of 2012 sentences. There are 45 different POe input string. Table 2 shows the features we use. All
labels, and the three NP labels. three approaches use the same features, with the obvious
exception that the FCRF and the first stage of CRF+CRF
do not use the POS featurés= T

Automatically finding the base noun phrases in a sentenc
can be viewed as a sequence labeling task by labelin

We compare a factorial CRF to two cascaded approache
which we callCRF+CRFandBrill+CRF. CRF+CRF uses

one linear-chain CRF to predict POS labels, and anothePerformance on noun-phrase chunking is summarized in
linear-chain CRF to predict NP labels, using as a featur@able 1. As usual, we measure performance on chunking
the Viterbi POS labeling from the first CRF. Brill+CRF by precision the percentage of returned phrases that are



Wi = W Method Time (hr) NP F1 LBFGS iter

w; matchegA-Z][a-z]+ K s e s K
matchedA-Z] Random (3) | 15.67 2.90] 8857 054] 63.6
W Tree (3) 1385 116 88.02 055 326
w; matchegA-Z]+ Tree (o) 1357 303 8867 057 658
w; matchedA-Z]+[a-z]+[A-Z]+[a-Z] Random 6o) | 13.25 151| 88.60 0.53|  76.0
w, matches*[0-9].* Exact 2049 1.97| 88.63 053] 73.6

w; appears in list of first names,
last names, company names, days,
months, or geographic entities

wy IS contained in a lexicon of words

Table 3. Comparison of F1 performance on the chunking task by
inference algorithm. The columns labeledjive the mean over
five repetitions, and the sample standard deviation. Approx-
imate inference methods have labeling accuracy very similar to

with POST (from Brill tagger) exact inference with lower total training time. The differences
Ti=T in training time between Treex}) and Exact and between Ran-
qr(x,t +0) forall k ando € [—3, 3] dom (cc) and Exact are statistically significant by a pairest

(df = 4;p < 0.005).
Table 2. Input featuresy (x, ¢) for the CoNLL data. In the above
w; is the word at positiort, T; is the POS tag at positioh) w
ranges over all words in the training data, daidanges over all

part-of-speech tags data on which CRF+CRF performed better than the FCRF.

The variation over the randomly selected training subsets
is small—the standard deviation over the five repetitions

has mean 0.39—indicating that the observed improvement

correct;recall, the percentage of correct phrases that wergg 1ot que to chance. Performance and variance on noun-
returned; and their harmonic meah. In addition, we also phrase chunking is shown in Figure 3.

report accuracy on POS labélaccuracy on the NP labels,
and joint accuracy on (POS, NP) pairs. Joint accuracy i$n this data set, several systems are statistically tied for
simply the number of sequence positions for which all la-best performance. Kudo and Matsumoto (2001) report an
bels were correct. The NP label accuracy should not bé&1 of 94.39 using a combination of voting support vector

compared across systems, because different systems u@@chines. Sha and Pereira (2003) give a linear-chain CRF
different labeling schemes to encode which words are irthat achieves an F1 of 94.38, using a second-order Markov
the same chunk. assumption, and including bigram and trigram POS tags as

. . i , features. An FCRF imposes a first-order Markov assump-
Each row in Table 1 is the average of five different randomyjo gyer labels, and represents dependencies only between

subsets of the training data, except for row 8936, which iscotemporal POS and NP label, not POS bigrams or tri-
run on the single official CoNLL training set. All condi- gramg Thus, Sha and Pereira's results suggest that more
tions used the same 2012 sentences in the official test Setjcp|y structured DCRFs could achieve better performance

On the full training set, FCRFs perform better on NP thanan FCRF.

chunking than either of the cascaded approaches, inclugyher pCRF structures can be applied to many different
ing Brill+POS. The Brill tagger (Brill, 1994) is an estab- |nq,age tasks, including information extraction. Peshkin

lished high-per.formarjce tagger whose training set is NoL 4 prefrer (2003) apply a generative DBN to extrac-
only over four times bigger than the CoNLL 2000 data Setyjq from seminar announcements (Frietag & McCallum,

but also includes the WSJ corpus from which the CONLL 19q9) - attaining improved resuits, especially in extracting

2000 test set was derived. The Brill tagger is 97% accugcations and speakers, by adding a factor to remember the
rate on the CoNLL data. Also, note that the FCRF—whichjye ity of the last non-background label. Our early results

predicts both noun-phrase boundaries and POS—is MOtgi, 5 similar structure seem promising, for example, one
accurate than a linear-chain CRF which predicts only partpcrE structure performs within 2% F1 of a linear chain

of-speech. We conjecture that the NP chain captures longrgrg despite being trained on 37% less data.
run dependencies between the POS labels. '

On smaller training subsets, the FCRF outperforms4.2. Comparison of Inference Algorithms

CRF+CRF and performs comparably to Brill+CRF. For all i .

the training subset sizes, the difference between CRF+CRBECcause DCRFs can have rich graphical structure, and re-
and the FCRF is statistically significant by a two-sampledUiré many marginal computations during training, infer-

t-test p < 0.002). In fact, there was no subset of the €NC€ is critical to efficient training with many labels and
' large data sets. In this section, we compare different infer-
2To simulate the effects of a cascaded architecture, the PO8nce methods both on training time and labeling accuracy
labels in the CoNLL-2000 training and test sets were automatiof the final model.
cally generated by the Brill tagger. Thus, POS accuracy measures . . . )
agreement with the Brill tagger, not agreement with human judgeBecause exact inference is feasible for a two-chain FCRF,

ments. this provides a good case to test whether the final classifica-



tion accuracy suffers when approximate methods are useobsed updates could outperform random asynchronous up-
to calculate the gradient. Also, we can compare differentates. Also, in complex models, the difference in classifi-
methods for approximate inference with respect to speedation accuracy between exact and approximate inference
and accuracy. could be larger, but then exact inference is likely to be in-

We train factorial CRFs on the noun-phrase chunking tasIEraCtable'

described in the last section. We compute the gradientn summary, we draw three conclusions about this model.
using exact inference and approximate belief propagatioifrirst, using approximate inference instead of exact infer-
using random, and tree-based schedules, as described énce leads to lower overall training time with no loss in ac-
section 3.2. Algorithms are considered to have convergeduracy. Second, there is little difference between a random
when no message changes by more than®. In these tree schedule and a completely random schedule for belief
experiments, the approximate BP algorithms always conpropagation. Third, running belief propagation to conver-
verged, although this is not guaranteed in general. Wgence leads both to increased classification accuracy and
trained on five random subsets of 5% of the training datalower overall training time than an early cutoff.

and the same five subsets were used in each condition. All

experiments were performed on a 2.8 GHz Intel Xeon with :

4 GB of memory. 5. Conclusions

Dynamic CRFs are conditionally-trained undirected se-

ing on convergence (Random{ and Treefc) in Table 3), ~ duence models with repeated graphical structure and tied
to terminating after three iterations (Random (3) and Tred@rameters. They combine the best of both conditional

(3)). Although the early-terminating BP runs are less actandom fields and the widely successful dynamic Bayesian

curate, they are faster, which we hypothesized could resulf€™orks (DBNs). DCRFs address difficulties of DBNs, by
in lower overall training time. If the gradient is too inac- €aSily incorporating arbitrary overlapping input features,

curate, however, then the optimization will require many@nd of prévious conditional models, by allowing more com-
more iterations, resulting in greater training time overall,P/€X dependence between labels. Inference in DCRFs can

even though the time per gradient computation is lowerP€ done using approximate methods, and training can be

Another hazard is that no maximizing step may be possid©n€ by maximum a posteriori estimation.

ble along the approximate gradient, even if one is possibl&mpirically, we have shown that factorial CRFs can be
along the true gradient. In this case, the gradient descent alsed to jointly perform several labeling tasks at once, shar-
gorithm terminates prematurely, leading to decreased pefng information between them. Such a joint model per-
formance. forms better than a model that does the individual label-

Table 3 shows the average F1 score and total training time§9 tasks sequentially, and has potentially many practical
of DCRFs trained by the different inference methods. Un-mplications, because cascaded models are ubiquitous in
expectedly, letting the belief propagation algorithms runNLP- Also, we have shown that using approximate infer-

to convergence led to lower training time than the early€"C€ leads to lower total training time with no loss in accu-

cutoff. For example, even though Random(3) averaged@®y:

427 sec per gradient computation compared to 571 sef future research, we plan to explore other inference meth-
for Randomgo), Randomgo) took less total time to train, ods to make training more efficient, including expectation

because Random() needed an average of 83.6 gradientpropagation (Minka, 2001) and variational approximations.

computations per training run, compared to 133.2 for Rana|so, investigating other DCRF structures, such as hier-
dom(3). archical CRFs and DCRFs with memory of previous la-

As for final classification performance, the various approx-P€ls: could lead to applications into many of the tasks to
imate methods and exact inference perform similarly, ex\Vhich DBNs have been applied, including object recogni-
cept that Tree(3) has lower final performance because mafion: speech processing, and bioinformatics.

imization ended prematurely, averaging only 32.6 maxi-
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