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Abstract

The multiple-instance learning (MIL) model has
been very successful in application areas such
as drug discovery and content-based image-
retrieval. Recently, a generalization of this model
and an algorithm for this generalization were in-
troduced, showing significant advantages over
the conventional MIL model in certain applica-
tion areas. Unfortunately, this algorithm is in-
herently inefficient, preventing scaling to high

can have multiple conformations (shapes), and only one
conformation need bind at the site for the molecule to be
considered positive. Thus when an example is negative,
all conformations in it are negative, but if an example is

positive, then it may be the case that only one conforma-
tion of the set is positive, and the learner does not know
which one. Since its introduction, the MIL model has been

applied to content-based image retrieval (Maron & Ratan,
1998; Zhang et al., 2002), where each instance in a multi-
instance exampleb@g) represents a feature of an image,

and it is not known which feature corresponds to the con-

dimensions. We reformulate this algorithm us-
ing a kernel for a support vector machine, reduc-
ing its time complexity from exponential to poly-
nomial. Computing the kernel is equivalent to
counting the number of axis-parallel boxes in a
discrete, bounded space that contain at least one
point from each of two multiset® and@. We
show that this problem is #P-complete, but then
give a fully polynomial randomized approxima-
tion scheme (FPRAS) for it. Finally, we empiri-
cally evaluate our kernel.

tent the user wants to retrieve. As with binding prediction,
the MIL model used for content-based image retrieval as-
sumes that the label of an example is a disjunction of the
labels of the instances in the example.

Recently, Scott et al. (2003) generalized the MIL model,
allowing an example’s label to be represented as-aft

k threshold function rather than as a disjunction. They
then presented an algorithm (referred to here as GMIL-1)
for learning general geometric concepts in this new model
and evaluated it empirically on problems from robot vi-

sion, content-based image retrieval, binding affinity, and
biological sequence analysis. In all experiments, GMIL-
1 was competitive with algorithms from the conventional
MIL model. Further, on problems requiring the labeling
Dietterich et al. (1997) introduced the multiple-instancefunction to be more general than a disjunction, GMIL-1
learning (MIL) model motivated by the problem of pre- showed a significant advantage in prediction error.

dicting whether a molecule would bind at a particular site. . . ) .
Since shape of a molecule largely determines binding affin®MIL-1 works by first explicitly snumerat!ng all axis-

ity, they represented each molecule by a high-dimensiondiara/lel boxesinthe spage, . ..., s}, whered is the num--
vector that describes its shape, and labeled molecules thg" Of dimensions andis the number of discrete values in
bind at a site as positive examples and those that do not birfePCh d|men5|_0n. Thenit assigns boolt_ean attrlb’utes to these
as negative. Then they learned an axis-parallel box thak?oxes, and gives these attributes to Littlestone’s (19B1) a

distinguishes the positives from the negatives. The motivad®'ithm Winnow, which leams a linear threshold unit. The
tion for the MIL model is the fact that a single molecule M€ complexity of this algorithmis exponentialdnwhich

obviously limits the applicability of GMIL-1. While there
Appearing inProceedings of the21** International Conference has been progress in developing heuristics to significantly
on Machine LearningBanff, Canada, 2004. Copyright 2004 by speed up this algorithm in practice (Tao & Scott, 2004), the
the authors. algorithm is still limited in its scalability.

1. Introduction



We show that a kernel exists that exactly corresponds to thand A’s running time is polynomial inz|, 1/¢, and1/4.
feature mapping used by GMIL-1. To compute the kernel Further, we callA(z) ane-good approximatioof f(z).
one takes two bags of poinfdand@ and counts the num-
ber of boxes defined of0, ..., s} that contain at least
one point fromP and at least one point froi). We first
show that this problem is #P-complete, present a fully poly-n the original MIL model (Dietterich etal., 1997), each ex-
nomial randomized approximation scheme (FPRAS) for itampleP is abag (multiset) of instances, ankt is given a
and then empirically evaluate our kernel. label of positive if and only if at least one of the instances i
The rest of this paper is organized as follows. In the nextp Is labeled pogpve (tis gnknown which mstanqe(s)Fin

. . s ; are labeled positive). Typically, the label of a pginE P
section we introduce some notation. In Section 3 we de- . . o . -
is determined by its proximity to a target point Since

scribe the MIL model and present Scott et al’s general-"_ : .
ization of it, as well as their algorithm GMIL-1. Then its introduction, the MIL model has been extensively stud-

: . . Pd (Wang & Zucker, 2000; Andrews et al., 2002; Dooly
in Section 4 we present our kernel-based reformulation oet al 2002 Rav & Page. 2001 Maron & Lozano-Pérez
GMIL-1. We show that computing this kernel is equiva- ) » ~ay ge, X '

. . %998; Zhang & Goldman, 2001) with applications focus-
lent to counting the number of boxes that contain at IeasIn on molecular binding affinity (related to drug discov-
one point from both set® and(@, a problem that we for- 9 9 Y 9

mally define in Section 5 as #BOXAnd. We prove that thisery) and content-based image retrieval.

problem is #P-complete and give an FPRAS for it. In Sec-Scott et al. (2003) generalized the MIL model such that
tion 6 we describe experimental results of our new kernetather thanP’s label being a disjunction of the labels of the
on applications such as content-based image retrieval, prénstances inP, the label is represented by a threshold func-
diction of drug affinity to bind to multiple sites simultane- tion. In contrast to the conventional MIL model, in their
ously, protein sequence identification, and the Musk datanodel the target concept is defined by tegtsof points.

3. Multiple-Instance Learning

sets. Finally, we conclude in Section 7. Specifically, they defined their concepts by a sek dat-
traction” pointsC' = {c1,...,cx} and a set ok’ “repul-
2 Notation and Definitions sion” pointsC' = {¢c1,...,c }. Then the label for a bag

P = {p1,...,pn} is positive if and only if there is a sub-
Let X denotef0, ..., s}? (though our results trivially gen-  set ofr pointsC’ C C U C such that each attraction point
eralize toX = Hle{o, ...,5:}). Let By denote the c¢; € C"isnearsome pointi® (where “near” is defined as
set of all axis-parallel boxes (including degenerate bpxeswithin a certain distance under some weighted norm) and
from X. We uniquely identify any box € By as a pair €ach repulsion point; € C” is not near any point iP.

(e, bu), _WE‘?,rebf IS thehlower left cornerb?nd>UI|s thfe In other words, if one defines a boolean attributéor each
upper right” comer. There are + 1 possible values for - 44 ction point; € C that is 1 if there exists a poipte P

each corner, so the number of intervals in each dimensmHear it and 0 otherwise and another boolean attribyfer

: s+1 H i =
is (°3') + s + 1 since we allow degenerate intervals. Thus o ch repulsion point; € C that is 1 if there is no point

Bx| = ((°3") + s+ 1)d = (532)01. from P near it, thenP’s label is an--of-(k + k') threshold
For multisetsP, Q C X, let B(P) denote the set of boxes function over.the att.ributes. the thatri% 1 andif therg
in By that contain a point fronP and B(P A Q) denote are no repulsion points, then this model is the co_nventlonal
the set of boxes i3 that contain a point fronP and a multi-instance model, except that there are multiple targe

point fromQ. When P and@Q contain single points then points and the final concept is a union of these points.

we will omit set notation. For exampl&({p} A {q}) will Independently of Scott et al., Weidmann et al. (2003) de-
be denoted aB(p A q). fined their own generalizations of the MIL model. The
first (presence-baseWlIL) is the same as Scott et al.'s
rmodel withr = k and no repulsion points. Their second
(threshold-baseMIL) generalizes presence-based MIL by
requiring each; € C to be near at leagt distinct points
from P for P to be labeled positive, wherg is a non-
negative integer that is part of the definition of the target
concept. Their third modetpunt-based/IL) generalizes
threshold-based by requiring the number of distinct points
from P that are near; to be at least; and at most;.

We will use vector notation to refer to points ii only
when itis necessary (e.g. in Section 5.1); otherwise we wil
just use lower case letters to refer to point&inThe notion

of approximation that we use is defined as follows.

Definition 1 Let f be a counting problem. Then arandom-
ized algorithmA is anFPRAS (Fully Polynomial Random-
ized Approximation Schemd)for any instancer, and pa-

rameterse, d > 0,
Count-based MIL can represent the idea of repulsion points

Pr{|A(z) — f(z)| < ef(x)] > 16 by settingz; = 0 for each repulsion point. Thus this model



generalizes the one of Scott et al. whea: k& + k’. How- ¢, = +1if @ - &; > # and—1 otherwise § > 0 is a thresh-
ever, the ability of Scott et al’s model to represerif-  old). Given the true labe};, the weights are updated as
(k + k') threshold concepts far < k + k' expands its  follows: @ = @ o (¥:~¥)/2 for somea > 1. Thus Win-
representational ability beyond the scope of the generaliz now is very similar to the Perceptron algorithm, but updates
tions of Weidmann et al. (2003). As an example of whyits weights multiplicatively rather than additively.
this is useful, consider the representation of a human facEJ . . .
) ing the above remapping of bags to boolean attributes,
with shape-based features. For the eyes, the target conce:?f ) =
) . . . . arget concept defined by soie C, andr can be rep-
might require two regions with elongation n€aR2 and an , )
. . resented by am-of-(k + k) threshold function over the
Euler number (number of connected regions minus num-_ . _ _ =
. attributesa,, for ¢; € C andag, for ¢; € C'. Such a func-
ber of holes) of 0. In addition, one wants (for the mouth) ; i (. ; .
. : . : tion can easily be learned by Winnow while making only
one region with elongation near 8 and 0 or 1 holes in the ) : . .
. . . O(r(k + k')dlog s) mistakes (Littlestone, 1991) in an on-
region. Then there are other constraints (in terms of th?me learning settin
above features or based on other shape descriptors) for the 9 9
shape of the face. There exists a target concept for this casénfortunately, the time complexity of this algorithm is
in presence-based MIL so long as all features are visibldinear in N, which is exponential inogs and d. By
But if some parts of the face are occluded (e.g. due to thapplying a grouping trick from Goldman et al. (2001),
subject wearing sunglasses) and the set of parts that are oc@re can reduce the time complexity frof(s2¢) to
cluded can vary, then it is difficult to represent the targetO ((nr(k + k’)dlog s)>?) for the on-line learning case and
concept with even count-based MIL. In contrastaof- O ((nm)2?) for the batch learning case, where is the
k threshold function like that from Scott et al. is a natural number of bags in the training set ands the number of
way to represent the target concept. points in each bag. However, this improvement is insuffi-

When they introduced their generalized MIL model, Scott®ent to allow scaling of the algorithm to general Re-

et al. also gave an algorithm (GMIL-1) for it. GMIL-1 cently, Tao and Scott (2004) developed heuristics (GMIL-

is adapted from an algorithm by Goldman et al. (2001).2) to significantly speed up this algorithm in practice, in-
; -~ ¢luding a version that runs in timely(d) in exchange for

GMIL-1 learns geometric concepts, and Scott et al. apphe(ﬁeing gexponential - Howg\l/ee)ry(bgth variatior?s siill

it to various application areas: robot vision, contentduas o ) L L

image retrieval, biological sequence analysis, and molecr-]aveII exponentm}:;me complexity and are thus limited to

ular binding. In all tests, GMIL-1 was competitive with >1'a w7 Of Smalld.

(and often superior to) the MIL algorithms Diverse Den- )

sity (Maron & Lozano-Pérez, 1998) and EMDD (Zhang 4. Kernel-Based Reformulation of GMIL-1

& Goldman, 2001). GMIL-1's advantage was most clear

when there was no way to represent a target concept iH1 seeking out an algorithm that scales polynomially in both

the original MIL model, such as a content-based image re” andd, we define a kernel that can be used with a sup-

trieval task in which the objective was to identify natural port vector machine to efficiently learn geometric multiple

.- ) : instance concepts. We will show that computing such a
scenes containing a field but not a sky (see Section 6.1). kernel on two b%gsP andQ corresponds 1o c?)unti%g the

GMIL-1 can be summarized as follows. It operates in a disnumber of boxes that contain at least one point from each of
cretized feature space (without loss of generality, assum@ and(). After we show that this problem is #P-complete,
itis X = {0,...,s}%). GMIL-1 enumerates the sé&x  we develop an FPRAS for it.

of all possible boxes (including degenerate onesyi(so

|Bx| = (3“2“2)‘1) and creates an attributg for each box

b € By. Given abagP € X", the algorithm seta;, = 1 if
some point fromP lies inb anda;, = 0 otherwise. To cap-
ture the notion of repulsion points, they also defined com
plementary attributesa;, = 1 — a;. TheseN = 2|By|
attributes are given to the algorithm Winnow (Littlestone, kn(P,Q) = ¢n(P) - ¢a(Q) = |IB(PAQ)| ,
1991), which learns a linear threshold unit.

Observation 1 Consider two bag®, @ C X and a map-
ping o (P) = (a1,...,an) wherea; = 1 if the corre-
sponding bo»; € By contains a point fromP and 0 oth-
erwise. Then when using an SVM for learning, the remap-
ping used by GMIL-1 corresponds to using the kernel

where B(P A Q) is the set of boxes that contain a point
Winnow maintains a weight vectoi € R+t~ (N-  from P and contain a point frond).
dimensional positive real space), initialized to all 1s.0dp

receiving input; € [0, 1]V, Winnow makes its prediction PToof: Since¢,(P) and¢,(Q) are binary vectors, their

dot product is simply the number of 1s in corresponding

'This was done because Winnow in its standard form cannopositions. Since a bit frond, (P) is 1 if and only if the
represent negative weights. In our kernel formulation of-Se corresponding box contains a point fraf) the value of
tion 4, we only use théV attributesas. kn(P, Q) is obviously| B(P A Q). 0



5. The Box Counting Problem#BOXAnd must be easily computed. Second, foria#t {1,...,m},

b i it fol hat the k ; we must be able to sample uniformly elements frén
From Observation 1, it follows that the kerng) for Finally, given anys € B and anyi € {1,...,m}, we must

GMIL-1 corresponds to the box cognting proplem that Weha able to easily determinedfe B,.

call #BOXAnd, which we now define. The input to the

problem is a triple(X’, P, Q). The problem #BOXAnd is If the above criteria are satisfied, Karp et al.'s algorithm
to compute| B(P A Q)|: the number of boxes iy that ~ proceeds as follows. First defilé = {(s,i) | s €
contain at least one point from each BfandQ. In this B;andl < i < m} (so|U| = ", |B;). Define an-
section we prove that #BOXAnd is #P-complete, and therpther setG = {(s,i) | i is the smallest index such that

we present an FPRAS for it. s € B;}. Then we havey? C U and|G| = |B|. Karp
et al’s algorithm runs in trials. For each trial, first a set
5.1. Hardness Result fo¥BOXAnd B; is chosen at random with probabilitys;|/|U]. Then

an element € B; is chosen uniformly at random. These
It is easy to see that #BOXANd is in #P: given a partiC'tWO Steps together uniform|y Samp'e a p@grl) from U.
ular boxb € BX, it is Simple to Verify thath contains a Fina”y’ if (S,Z) c G we increment a Counte)r’ otherwise
point from bothP and@. We now prove #P-completeness (o nothing. The final estimate 68| is |U|y/S, whereS

by reducing from themonotone DNF counting problem g the number of samples drawn. The following theorem
(#MDNF), shown to be #P-complete by Valiant (1979). An hounds the error of this approximation.

instance of #MDNF is a monotone boolean form#ldi.e.
with no negated literals) in disjunctive normal form, and
an algorithm for this problem is to output the number of Theorem 3 (Karp et al., 1989) If

satisfying assignments @f. S > 4(|U|/|G|)In(2/5)/€*, then
Let F' be a monotone DNF formula in variables withm
monotone terms, to, ..., t,. Let S(F) denote the set Pr{(1—¢)|B| < |U|y/S < (1+¢€)|B|]>1-0.

of all satisfying assignments @f. ThenS(F') = {J, S(t;).
Each monotone tertcan be identified with an-bit binary
vectorv; as follows: v; = vivy...v, Wherev; = 1 if
x; € tandv; = 0if z; € t. Then, since is monotone,
the set of satisfying assignments forS(t) = {d@ | @ >
0: }. (For twon-bit vectorsi = (uq,ua,...,u,) andv =
(v1,v2,...,0p), @ > Uiff u; >v; forall1 <i <n.)

We now apply Karp et al.'s result to #BOXAnd. Recall
that for two pointsgp, ¢ € X, B(p A q) denotes the set of
boxes that contain both andq. LetW = |B(P A Q)|
ThenW = |U,cpqeq B A q)|. Itis straightforward
to compute|B(p A q)|. Given pointsp,q € X, let{ =
Theorem 2 #BOXAnd is #P-complete. (f1,...,4a) be the lower corner of the bounding box of
p andgq, i.e.¢; = min{p;,q;} for all i. Similarly define
Proof: We have already established that #BOXANd is inu = (uy,...,uq) as the upper corner. TheB(p A q)| =
#P. We now show that #BOXAnd is #P-hard by reducing (H1gigd(£i +1)) (TTcicals —ui + 1))_ Since we can

#MDNF to a special case of #BOXANnd whete= H,, =
{0, 1}". The reductiony takes a formula® = \/,_,... exactly computéB(pAq)| forall (p, q) € P x @ and there

and maps it to an instang& F') = (H,,, P, Q) whereP = are onlyn? such sets, we can easily choose ai36t A q)
(0} andQ = {70y, 1y, .- 1, ). with probabilty| B(pAa)/ (X,cpgeq 1B A )l). Fur

We now argue thaltS(F")| equals the number of solutions thn(?frc’)r?;rllcievl\l:ct?:n Igm(];?r:r:z Sameﬁligiggg /\eQ)cabr? ni-
to (H,, P,Q) of #BOXAnd. Clearly,B(0 A #) = {(0,@) |  SnWormy Ing fow upp W unt

I - S - =7 formly sample from the set/ = {(p,q,c) | p € P,q €
u > v}. Foranyterm;, a € S(t;) & a > v, < (0,d) € o ’
=) Forany (i) e 00 GeeBprg).

B(0A®;,). Thus the number of satisfying assignmentsof
= |Ui<icm S| = [Ui<i<m BOAYE )| = [BH{O}AQ)|  Note thatlU| = >° p .o |B(p A g)]. Now consider all

= the number of solutions H,,, P, Q). [J  the pairs(p, q) such thapp € P andq € Q. We define a
total order< on these pairs by sorting first bhys index in
5.2. An FPRAS for#BOXAnd P, and then by,’s index inQ. l.e. given point®;, p;, € P

) L , andg;, gj € Q, we define(p;, q;) < (pir,q;0) iff @ <4’ or
Our algorithm for estimatingB(P A Q)| is based on the . _ i andj < j'.

general technigue from Karp et al. (1989) on the union

of sets problem. In this problem, the goal is to take a deConsider another s&t = {(p,q,c) € U | there are no
scription of m setsBy, ..., B,, and estimate the size of pairs(p’,q¢') < (p,q) such thatc € B(p’ A ¢')}. Then
B =", B;. In order to apply their technique, three cri- |G| = [U,ep,eq B(P A @) = W. We check whether
teria must be satisfied. First, for alle {1,...,m}, |B;|  (p,q,c) € G in O(dn?) time by checking: against each



setB(p A q) forall p € P andg € Q. Finally, we note that to the off-diagonal elementsk, (P, Q) is the number of
) ) boxes that contain a point froi? and a point fron). If
Ul = Z [BlpAg)l <n nax [BpAg)l <n7|G| . few points fromP and( are close to each othér, (P, Q)
pePacQ 1 will be much smaller thar, (P, P) andka(Q, Q). This
@ worsens whenl is large. For example, in our Musk ex-
Thus by drawing a sufficient number of samplesg, c) periments, the ratio of diagonal entries in the kernel matri
uniformly from U and incrementing when(p, ¢,c¢) € G,  to the off-diagonal entries was often arour@’. In prac-
we know thafiV’ = |U|v/S is ane-good approximation of  tice, SVMs do not work well with diagonally dominated
W, as stated in the following theorem. Singgthe timeto  Gram matrices. To solve this problem, Scholkopf et al.
draw each sample, and the time to check each sample f¢2002) propose first using a nonlinear function to reduce
membership irG are all polynomial im, d, log s, 1/e,and  the value of each matrix element, such as a sub-polynomial

1/6, our algorithm for #BOXAnNd is an FPRAS. function p(z) = signz) - |z|” with 0 < p < 1. To then
get a positive definite Gram matrix, they use the empirical
Theorem 4 If S > 4n%1n(2/5)/€2, then kernel mapp,, () = (K'(z,z1), k' (z,22), - - , k' (z,22)),
- wherek/ (z, ;) = o(k(x, z;)). Finally they apply the ker-
Pril-—gW<W=Uly/S<(1+ E)W} z1-0 nel kemp((a:, y)): gb,f(:g) . gb,)l)(y). In the empirical kernel,
the set{z,--- , x,,} can consist of all training and testing
Proof: Directly from application of Equation (1) to Theo- pags (referred to asansduction or of only the training
rem 3. U bags. We applied this method with to address our diago-

Our algorithm as presented has running time_”al dominance problem (see Section _6.4)._Also, singe,
O(n*d(log s)In(1/8)/€?) since it takesO(dn?) steps IS always a kernel no matter whiats, with this rr_1eth(_)d we
to check each sample for membershipdn However, it do _not need to worry about whether auapproximation of
is possible to check for membership@in time O(dn). ~ # is really akermel.

Given a triple(p;, ¢;,c) sampled fromU, first check all

pointsp; € P that are contained in. If i < i for some 6. Experimental Results

pi € ¢ then(pir,q;) < (pi,q;) and (pi,q5,¢) ¢ G. .
If there does not exist such g, then check all points To compare our kernel to the algorithm GMIL-1 of Scott

¢y € Q that are contained in. Again, if j/ < j for €t al. (2003) and _GMIL-_Zh?f Tao and Scott (2004), we
someg;: € ¢, then(p;,q;') < (pi,q;) and(pi, g;,c) € G. tested our kernel with SVNF"* (Joachims, 1999_) on asub_—
If no suchg; exists, then(p;,q;,c) € G. This check set of the data sets they used: content-based image rétrieva
requires timeO(dn), reducing the total running time to (réal data) and predicting when drugs would bind at mul-
O(n3d(log s)In(1/8)/€?). tiple sites of a molecul_e (simulated data). We also tested
our kernel on the protein data used by Wang et al. (2004).
To further reduce time complexity, we can adapt Karpp|| these data sets have dimension at most 8, since GMIL-
et al’s “self-adjusting coverage algorithm” (a more ef- 1 and GMIL-2 cannot scale well to higher dimensions. To
ficient algorithm for the union of sets problem) to eyajuate our algorithm on high-dimensional data, we also
get an algorithrh for #BOXAnd with running time tested on simulated multi-site binding data and the Musk

O(n*d(log s)In(1/8)/€?). data sets from the UCI repository (Blake et al., 2004). In
_ _ all our tests, we approximatégl using our self-adjusting
5.3. Discussion approximation algorithm with = 0.1 andé = 0.01.

According to Observation % (P, Q) is a kernel since it )
is the dot product of two remapped vectors. But there i$-1- Content-Based Image Retrieval

no guarantee that the Gram matrix computed by our apm content-based image retrieval (CBIR), the user presents
proximation algorithm is positive semidefinite. However, examples of desired images, and the task is to determine
it is reasonable to believe thatdfis small andk,’'s Gram  commonalities among the query images and retrieve sim-
matrix has no zero Eigenvalues, the approximated matrifjar ones from the database. Maron and Ratan (1998) ex-
would not adversely affect SVM optimization. In fact, in pjored the use of conventional MIL for CBIR. They filtered

our experiments, our approximate kernel works very welland subsampled the images and then extracted “blobs”
when we set = 0.1. (groups ofm adjacent pixels), which were mapped to one

Another observation about our kernel is that its Gram maP0intin abag. Then they used the algorithm diverse density

trix potentially can have large diagonal elements relative(DP) (Maron & Lozano-Pérez, 1998) to learn a hypothesis
and find candidate images in the database. This work was

2For brevity, we omit the details of the self-adjusting algo- |ater extended by Zhang et al. (2002).
rithm since it is similar to the one already presented.



Table 1.Generalization error for CBIR (top), protein (middle), each prlotems primary ;equence to a bag in the _followmg
o . way. First, they found in each sequence the primary se-
and drug affinity (bottom) learning tasks.

Task on GMIL-I _GMIL-2> EMDD DD guence motif (typically CxxC) that is known to. exist in
sunsel _0.088  0.095 0.098 0.096 0'Ogga_ll Trx-fold prote_ms. Thgy then extracted a window of
conj. 0.108 0134 0.147 0.215 0181528 21_4 around it (SQ residues upstream, 1SQ downstream)
protein  0.213 N/A 0951 0338 0608 and aligned these windows a_round_the motlf_. They then
Edm 0205 0212 0918 0191 0196 mapped a!l sequences to g-dlmensmnal profiles based on
10-dim 0‘_175 N/A N./A 0.2'23 0.2.16 the numeric properties of Kim et al. (2000) and used them

20-dim 0207 N/A N/A 0268 0255 35 inputs to the multiple-instance learning algorithm.

Wang et al. (2004) used GMIL-2 to perform cross-
We experimented with the two CBIR tasks used by Scott e{z|idation tests: 20-fold CV on 20 postivies and 8-fold CV
al. One is the “sunset” task: to distinguish images containgp 160 negatives. So in each round, they trained GMIL-2
ing sunsets from those not containing sunsets. Like Zhangp 19 positive proteins plus one of 8 sets of negative pro-
etal., Scott et al. built 30 random testing sets of 720 examteins, and tested on the held-out positive protein plus the
ples (120 positives and 600 negatives): 150 negatives eagBmaining 7 sets of negative proteins. They repeated this
from the waterfall, mountain, field, and flower sets. Each oftgy each of the 8 sets of negative proteins. To compare

30 training sets consisted of 50 positives and 50 negativesyith their results, we performed the same tests with our

Another CBIR task Scott et al. experimented with was tokernel, EMDD and DD (Table 1).
test a conjunctive CBIR concept, where the goal was to dis- o o o
tinguish images containing a field with no sky from those6.3. Multi-Site Drug Binding Affinity

conta}ini_rwg a field and sky or <_:ontaining no field. Zhang Dietterich et al. (1997) introduced the conventional MIL
etal’s f|e_l_d Images th_at contained _th_e sky were relabele%odel motivated by predicting whether a conformation of
from positive to negative. Each training set had 6 bags oL, ,ticylar molecule would bind to a single site in another

each of flower, mountain, sunset, and waterfall for negag,qjacyje. They also described an open problem of how to
tives, and had around 30 fields, 6 of them negative and th&/

o . redict drugs that bind at multiple sites in a single molecul
rest positive. Eac_h negative test set had 150 bags of ea fitting in several of them simultaneously.
of flower, mountain, sunset, and waterfall. Also, each test
set had 120 fields, around 50 serving as positives and th&cott et al. used a generalization of the synthetic data of
remainder as negatives. Dooly et al. (2002) to reflect the notion of drugs where
a molecule must bind at multiple sites to be labeled posi-

The top two rows of Table 1 summarize the prediction er-;e pooly et al. created their data by first generating a sin

ror of our algorithm (%), GMIL-1, and GMIL-2. For gle “artificial receptor”. Then “artificial molecules” (de-

c_ompari_son purposes, we also give resu!ts for the algoﬁotedBi) were created, each with 3-5 instances per bag.
rithms Diverse Density (Maron & Lozano-Pérez, 1998) andThe label of bagB; was determined as follows. For each

EMDD (Zhang & Goldman, 2001) that operate in the con—Bij € B;, they computedZ. ., which is the binding en-

ventlone_ll MIL model. The sunset ta§k f|ts wgll into the ergy of B;; to . They then identified the instané®; € B
conventional MIL model; hence there is little difference in that most strongly binds tband setf, = Ep_. They

perfo_rmance between any of the alg_orith_ms on this (_1ata S€fhen normalized®, to [0, 1] and thresholded it at/2 to

But since thg conjunctive task requires identifying images, o 5 binary label as to whether the molecule binds at
that have a field and have no sky, we see that the genergly e generalization used by Scott et al., there are multi-
ized model IS requwgﬁ We also note that the use of an ple target points (“subtargets”), each of which must bind to
SVM_|mpr0\_/ed prgdlcuon accuracy when Compafed to a"some instance in a bag for the bag to be positive. l.e. bag
algorithms, including GMIL-1 and GMIL-2, which use the B;’s label is positive iff each subtarget induces a normal-

same hypothesis space as our algorithm. ized binding energy of at leasf2 in some poinB;; € B;.

6.2. Identifying Trx-fold Proteins Scott et al. used Dooly et al.'s modified data generator to

build ten 5-dimensional data sets (200 training bags and
The low conservation of primary sequence in protein superaqg testing bags), each with 4 subtargets. To test how well
families such as Thioredoxin-fold (Trx-fold) makes con- gyr kernel handles higher-dimensional data, we also gener-
ventional modeling methods difficult to use. Wang et al. ated data with dimension 10 and 20, each with 5 subtargets.
(2004) propose using multiple-instance learning as a tooAs with the 5-dimensional data, ten sets were generated,
for identification of new Trx-fold proteins. They mapped gach with 200 training bags and 200 testing bags. Results

3Scott et al. (2003) showed that repulsion points are reduire are at the bottom of Table 1.

for this learning task.



6.4. Musk Data Sets Table 2.Classification error on the Musk data sets. EMDD, mi-

Finally, we tested on the Musk data sets from the UCISVM, and MI-SVM are from Andrews et al. (2002), DD is from
repository (B'ake et al', 2004)’ which represent dif‘ferentMaron and Lozano-Pérez (1998), and IAPR is from Dietterich
conformations of various molecules, labeled according t&! al. (1997).

whether they exhibit a “musk-like” odor when smelled by a Algorithms Musk 1 | Musk 2
human expert. Most results reported by others on this data kn ) 0.176| 0.227
set are based on 10-fold cross-validation on the 92 bags. ¥ emp NON-transductior)  0.120| 0.118
We performed 10-fold cross-validation experiments on the kA emp transduction 0.088| 0.097
same 10 partitions used by Dietterich et al. (1997). EMDD 0.152} 0.151

DD 0.120| 0.160
For the Musk experiments, the ratio of diagonal entries mi-SVM 0.126| 0.164
in the kernel matrix to the off-diagonal entries was often MI-SVM 0.221| 0.157
around10®°. So we applied the method of Scholkopf et al. IAPR 0.076! 0.108

(2002) to solve this problem. We used the sub-polynomial
function z'/%° to reduce the range of each entry in the

Gram matrices and then let SV¥It work with the em-  This occurred despite the fact that we computed the entire
pirical kernels described in Section 5.3. Gram matrix a priori rather than simply computing the en-

] tries as needed during SVM optimization. Further, since
Table 2 summarizes our results and those from Andrewggch |earning task in applications such as CBIR and drug
et al. (2002) with mi-SVM and MI-SVM and their re- pinging can be treated as a database query (the data set
sults with ,EMDD4' Results for DD come from Maron and giays fixed but each task involves a different labeling of the
Lozano-Peérez (1998), and “IAPR” is the iterative axis- yraining set), one could build the kernel matrix once for the
parallel rectangle algorithm from Dietterich et al. database and reuse it for each query. This would amortize

There are Signiﬁcant improvements when our empirica]the cost of bUIIdlng the matrix. This is what we did in our

kernels are used. The empirical kernel with transductiorMusk experiments, so the total time spent by our algorithm
has the second lowest error rate on Muskl and the lowfor all 10 folds was 2 hours for Musk 1 on a 750 MHz Sun

est error rate on Musk2. Its performance is competitiveBlade (compared to 135 hours for EMDD) and 40 hours for
with IAPR, which is specially tuned for the Musk data sets.Musk 2 (compared to 485 hours for EMDD).

Without transduction, our kernel has slightly higher error

rates, but it still has better performance compared to algo7. Conclusions

rithms from the conventional MIL model (except for IAPR
and DD on Musk 1). The conventional MIL model has proven to be a very pow-

) L o ) erful one with many applications and efficient algorithms.
Since our algorithm’s time complexity is linear ihand  Ajgorithms GMIL-1 (Scott et al., 2003) and its faster vari-
quadratic inn, we expect our speed to be most competitive,n GMIL-2 (Tao & Scott, 2004) in Scott et al.’s generaliza-
whend is large andz is moderate. This is what we found o of the conventional MIL model have enjoyed success
when comparing our algorithm (written in C++) to the Javaj, applications that cannot be represented in the conven-
implementation of EMDD by Zhang and Goldman. I:(grtional MIL model. However, both algorithms are inher-
the 10-dimensional binding affinity data, EMDD was 60% gnyjy inefficient, preventing scaling to higher-dimensibn
faster than our algorithfn but only 44% faster on the 20-  yat3 We formulated their algorithms as a kernel that can
dimensional data. For Musk 2, EMDD was 24% slower g seq with a support vector machine to learn concepts in

than our algorithm, and for Musk 1 it was 675% slofver iqir model. We showed that such a kernel is hard to com-

“Andrews et al. (2002) point out that the EMDD experiments PUte in general, and then we presented an FPRAS for it.
of Zhang and Goldman (2001) were optimistically biasedesinc Finally, we evaluated our kernel empirically.

they used the test set to choose the final hypotheses. Thus A?j | v sh d .. ith oth |
drews et al. reran those experiments. We also reran EMDDeon thOUT results not only showed competitiveness with other al-

same 10-fold partitioning used by us and Dietterich et aloseh  gorithms in terms of generalization error, but also in speed
rates are worse than those in Table 2: 0.152 for Musk 1 and0.20(versus EMDD), especially for data of more than 20 di-
for Musk 2, though we ?g'gt“Ot tune EMDD to minimize error.  mensions. We also note that it is trivial to parallelize the
Training with SVM™"" took less than ten seconds once the compytation of our kernel to get an almost linear speedup.
kernel matrix was computed, while kernel computation took o h . hi . Ki licati h
the order of minutes. Further, since each learning task in applications such as
SAssuming that a Java implementation is at most 10 timesCBIR and drug binding affinity can be treated as a database
slower than a C++ implementation, our algorithm is thus abiys ~ query, one could build the kernel matrix once for the entire
competitive with EMDD on Musk 1. database and reuse it for each query. This would amortize

the cost of building the matrix over many queries.



An open question that remains is: there are many resultkittlestone, N. (1991). Redundant noisy attributes, lauitié
bounding the generalization error of SVMs, but they as- errors, and linear threshold learning using Winnéwno-
sume that the kernel is exactly computed. What effect does ceedings of the Fourth Annual Workshop on Computa-
an e-approximate kernel (assuming it is a kernel) have on tional Learning Theorfpp. 147-156). San Mateo, CA:
generalization error? Morgan Kaufmann.
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