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Abstract

The multiple-instance learning (MIL) model has
been very successful in application areas such
as drug discovery and content-based image-
retrieval. Recently, a generalization of this model
and an algorithm for this generalization were in-
troduced, showing significant advantages over
the conventional MIL model in certain applica-
tion areas. Unfortunately, this algorithm is in-
herently inefficient, preventing scaling to high
dimensions. We reformulate this algorithm us-
ing a kernel for a support vector machine, reduc-
ing its time complexity from exponential to poly-
nomial. Computing the kernel is equivalent to
counting the number of axis-parallel boxes in a
discrete, bounded space that contain at least one
point from each of two multisetsP andQ. We
show that this problem is #P-complete, but then
give a fully polynomial randomized approxima-
tion scheme (FPRAS) for it. Finally, we empiri-
cally evaluate our kernel.

1. Introduction

Dietterich et al. (1997) introduced the multiple-instance
learning (MIL) model motivated by the problem of pre-
dicting whether a molecule would bind at a particular site.
Since shape of a molecule largely determines binding affin-
ity, they represented each molecule by a high-dimensional
vector that describes its shape, and labeled molecules that
bind at a site as positive examples and those that do not bind
as negative. Then they learned an axis-parallel box that
distinguishes the positives from the negatives. The motiva-
tion for the MIL model is the fact that a single molecule
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can have multiple conformations (shapes), and only one
conformation need bind at the site for the molecule to be
considered positive. Thus when an example is negative,
all conformations in it are negative, but if an example is
positive, then it may be the case that only one conforma-
tion of the set is positive, and the learner does not know
which one. Since its introduction, the MIL model has been
applied to content-based image retrieval (Maron & Ratan,
1998; Zhang et al., 2002), where each instance in a multi-
instance example (bag) represents a feature of an image,
and it is not known which feature corresponds to the con-
tent the user wants to retrieve. As with binding prediction,
the MIL model used for content-based image retrieval as-
sumes that the label of an example is a disjunction of the
labels of the instances in the example.

Recently, Scott et al. (2003) generalized the MIL model,
allowing an example’s label to be represented as anr-of-
k threshold function rather than as a disjunction. They
then presented an algorithm (referred to here as GMIL-1)
for learning general geometric concepts in this new model
and evaluated it empirically on problems from robot vi-
sion, content-based image retrieval, binding affinity, and
biological sequence analysis. In all experiments, GMIL-
1 was competitive with algorithms from the conventional
MIL model. Further, on problems requiring the labeling
function to be more general than a disjunction, GMIL-1
showed a significant advantage in prediction error.

GMIL-1 works by first explicitly enumerating all axis-
parallel boxes in the space{0, . . . , s}d, whered is the num-
ber of dimensions ands is the number of discrete values in
each dimension. Then it assigns boolean attributes to these
boxes, and gives these attributes to Littlestone’s (1991) al-
gorithm Winnow, which learns a linear threshold unit. The
time complexity of this algorithm is exponential ind, which
obviously limits the applicability of GMIL-1. While there
has been progress in developing heuristics to significantly
speed up this algorithm in practice (Tao & Scott, 2004), the
algorithm is still limited in its scalability.



We show that a kernel exists that exactly corresponds to the
feature mapping used by GMIL-1. To compute the kernel,
one takes two bags of pointsP andQ and counts the num-
ber of boxes defined on{0, . . . , s}d that contain at least
one point fromP and at least one point fromQ. We first
show that this problem is #P-complete, present a fully poly-
nomial randomized approximation scheme (FPRAS) for it,
and then empirically evaluate our kernel.

The rest of this paper is organized as follows. In the next
section we introduce some notation. In Section 3 we de-
scribe the MIL model and present Scott et al.’s general-
ization of it, as well as their algorithm GMIL-1. Then
in Section 4 we present our kernel-based reformulation of
GMIL-1. We show that computing this kernel is equiva-
lent to counting the number of boxes that contain at least
one point from both setsP andQ, a problem that we for-
mally define in Section 5 as #BOXAnd. We prove that this
problem is #P-complete and give an FPRAS for it. In Sec-
tion 6 we describe experimental results of our new kernel
on applications such as content-based image retrieval, pre-
diction of drug affinity to bind to multiple sites simultane-
ously, protein sequence identification, and the Musk data
sets. Finally, we conclude in Section 7.

2. Notation and Definitions

LetX denote{0, . . . , s}d (though our results trivially gen-
eralize toX =

∏d
i=1{0, . . . , si}). Let BX denote the

set of all axis-parallel boxes (including degenerate boxes)
from X . We uniquely identify any boxb ∈ BX as a pair
(b`, bu), whereb` is the “lower left” corner andbu is the
“upper right” corner. There ares + 1 possible values for
each corner, so the number of intervals in each dimension
is

(

s+1
2

)

+ s + 1 since we allow degenerate intervals. Thus

|BX | =
((

s+1
2

)

+ s + 1
)d

=
(

s+2
2

)d
.

For multisetsP, Q ⊆ X , let B(P ) denote the set of boxes
in BX that contain a point fromP andB(P ∧ Q) denote
the set of boxes inBX that contain a point fromP and a
point fromQ. WhenP andQ contain single points then
we will omit set notation. For example,B({p} ∧ {q}) will
be denoted asB(p ∧ q).

We will use vector notation to refer to points inX only
when it is necessary (e.g. in Section 5.1); otherwise we will
just use lower case letters to refer to points inX . The notion
of approximation that we use is defined as follows.

Definition 1 Letf be a counting problem. Then a random-
ized algorithmA is anFPRAS (Fully Polynomial Random-
ized Approximation Scheme)if for any instancex, and pa-
rametersε, δ > 0,

Pr [|A(x) − f(x)| ≤ εf(x)] ≥ 1 − δ

and A’s running time is polynomial in|x|, 1/ε, and1/δ.
Further, we callA(x) an ε-good approximationof f(x).

3. Multiple-Instance Learning

In the original MIL model (Dietterich et al., 1997), each ex-
ampleP is abag (multiset) of instances, andP is given a
label of positive if and only if at least one of the instances in
P is labeled positive (it is unknown which instance(s) inP
are labeled positive). Typically, the label of a pointp ∈ P
is determined by its proximity to a target pointc. Since
its introduction, the MIL model has been extensively stud-
ied (Wang & Zucker, 2000; Andrews et al., 2002; Dooly
et al., 2002; Ray & Page, 2001; Maron & Lozano-Pérez,
1998; Zhang & Goldman, 2001) with applications focus-
ing on molecular binding affinity (related to drug discov-
ery) and content-based image retrieval.

Scott et al. (2003) generalized the MIL model such that
rather thanP ’s label being a disjunction of the labels of the
instances inP , the label is represented by a threshold func-
tion. In contrast to the conventional MIL model, in their
model the target concept is defined by twosetsof points.
Specifically, they defined their concepts by a set ofk “at-
traction” pointsC = {c1, . . . , ck} and a set ofk′ “repul-
sion” pointsC̄ = {c̄1, . . . , c̄k′}. Then the label for a bag
P = {p1, . . . , pn} is positive if and only if there is a sub-
set ofr pointsC′ ⊆ C ∪ C̄ such that each attraction point
ci ∈ C′ is near some point inP (where “near” is defined as
within a certain distance under some weighted norm) and
each repulsion point̄cj ∈ C′ is not near any point inP .

In other words, if one defines a boolean attributeai for each
attraction pointci ∈ C that is 1 if there exists a pointp ∈ P
near it and 0 otherwise and another boolean attributeāi for
each repulsion point̄cj ∈ C̄ that is 1 if there is no point
from P near it, thenP ’s label is anr-of-(k + k′) threshold
function over the attributes. Note that ifr = 1 and if there
are no repulsion points, then this model is the conventional
multi-instance model, except that there are multiple target
points and the final concept is a union of these points.

Independently of Scott et al., Weidmann et al. (2003) de-
fined their own generalizations of the MIL model. The
first (presence-basedMIL) is the same as Scott et al.’s
model withr = k and no repulsion points. Their second
(threshold-basedMIL) generalizes presence-based MIL by
requiring eachci ∈ C to be near at leastti distinct points
from P for P to be labeled positive, whereti is a non-
negative integer that is part of the definition of the target
concept. Their third model (count-basedMIL) generalizes
threshold-based by requiring the number of distinct points
from P that are nearci to be at leastti and at mostzi.

Count-based MIL can represent the idea of repulsion points
by settingzi = 0 for each repulsion point. Thus this model



generalizes the one of Scott et al. whenr = k + k′. How-
ever, the ability of Scott et al.’s model to representr-of-
(k + k′) threshold concepts forr < k + k′ expands its
representational ability beyond the scope of the generaliza-
tions of Weidmann et al. (2003). As an example of why
this is useful, consider the representation of a human face
with shape-based features. For the eyes, the target concept
might require two regions with elongation near3/2 and an
Euler number (number of connected regions minus num-
ber of holes) of 0. In addition, one wants (for the mouth)
one region with elongation near 8 and 0 or 1 holes in the
region. Then there are other constraints (in terms of the
above features or based on other shape descriptors) for the
shape of the face. There exists a target concept for this case
in presence-based MIL so long as all features are visible.
But if some parts of the face are occluded (e.g. due to the
subject wearing sunglasses) and the set of parts that are oc-
cluded can vary, then it is difficult to represent the target
concept with even count-based MIL. In contrast, anr-of-
k threshold function like that from Scott et al. is a natural
way to represent the target concept.

When they introduced their generalized MIL model, Scott
et al. also gave an algorithm (GMIL-1) for it. GMIL-1
is adapted from an algorithm by Goldman et al. (2001).
GMIL-1 learns geometric concepts, and Scott et al. applied
it to various application areas: robot vision, content-based
image retrieval, biological sequence analysis, and molec-
ular binding. In all tests, GMIL-1 was competitive with
(and often superior to) the MIL algorithms Diverse Den-
sity (Maron & Lozano-Pérez, 1998) and EMDD (Zhang
& Goldman, 2001). GMIL-1’s advantage was most clear
when there was no way to represent a target concept in
the original MIL model, such as a content-based image re-
trieval task in which the objective was to identify natural
scenes containing a field but not a sky (see Section 6.1).

GMIL-1 can be summarized as follows. It operates in a dis-
cretized feature space (without loss of generality, assume
it is X = {0, . . . , s}d). GMIL-1 enumerates the setBX

of all possible boxes (including degenerate ones) inX (so

|BX | =
(

s+2
2

)d
) and creates an attributeab for each box

b ∈ BX . Given a bagP ∈ Xn, the algorithm setsab = 1 if
some point fromP lies in b andab = 0 otherwise. To cap-
ture the notion of repulsion points, they also defined com-
plementary1 attributesāb = 1 − ab. TheseN = 2|BX |
attributes are given to the algorithm Winnow (Littlestone,
1991), which learns a linear threshold unit.

Winnow maintains a weight vector~w ∈ <+N (N -
dimensional positive real space), initialized to all 1s. Upon
receiving input~xi ∈ [0, 1]N , Winnow makes its prediction

1This was done because Winnow in its standard form cannot
represent negative weights. In our kernel formulation of Sec-
tion 4, we only use theN attributesab.

ŷi = +1 if ~w · ~xi ≥ θ and−1 otherwise (θ > 0 is a thresh-
old). Given the true labelyi, the weights are updated as
follows: ~w = ~w α~xi(yi−ŷi)/2 for someα > 1. Thus Win-
now is very similar to the Perceptron algorithm, but updates
its weights multiplicatively rather than additively.

Using the above remapping of bags to boolean attributes,
a target concept defined by someC, C̄, andr can be rep-
resented by anr-of-(k + k′) threshold function over the
attributesaci

for ci ∈ C andāc̄j
for c̄j ∈ C̄. Such a func-

tion can easily be learned by Winnow while making only
O(r(k + k′)d log s) mistakes (Littlestone, 1991) in an on-
line learning setting.

Unfortunately, the time complexity of this algorithm is
linear in N , which is exponential inlog s and d. By
applying a grouping trick from Goldman et al. (2001),
one can reduce the time complexity fromΩ(s2d) to
O

(

(nr(k + k′)d log s)2d
)

for the on-line learning case and
O

(

(nm)2d
)

for the batch learning case, wherem is the
number of bags in the training set andn is the number of
points in each bag. However, this improvement is insuffi-
cient to allow scaling of the algorithm to generald. Re-
cently, Tao and Scott (2004) developed heuristics (GMIL-
2) to significantly speed up this algorithm in practice, in-
cluding a version that runs in timepoly(d) in exchange for
being exponential innm. However, both variations still
have exponential time complexity and are thus limited to
smallnm or smalld.

4. Kernel-Based Reformulation of GMIL-1

In seeking out an algorithm that scales polynomially in both
n andd, we define a kernel that can be used with a sup-
port vector machine to efficiently learn geometric multiple-
instance concepts. We will show that computing such a
kernel on two bagsP andQ corresponds to counting the
number of boxes that contain at least one point from each of
P andQ. After we show that this problem is #P-complete,
we develop an FPRAS for it.

Observation 1 Consider two bagsP, Q ⊆ X and a map-
ping ~φ∧(P ) = (a1, . . . , aN ) whereai = 1 if the corre-
sponding boxbi ∈ BX contains a point fromP and 0 oth-
erwise. Then when using an SVM for learning, the remap-
ping used by GMIL-1 corresponds to using the kernel

k∧(P, Q) = ~φ∧(P ) · ~φ∧(Q) = |B(P ∧ Q)| ,

whereB(P ∧ Q) is the set of boxes that contain a point
fromP and contain a point fromQ.

Proof: Since~φ∧(P ) and ~φ∧(Q) are binary vectors, their
dot product is simply the number of 1s in corresponding
positions. Since a bit from~φ∧(P ) is 1 if and only if the
corresponding box contains a point fromP , the value of
k∧(P, Q) is obviously|B(P ∧ Q)|.



5. The Box Counting Problem#BOXAnd

From Observation 1, it follows that the kernelk∧ for
GMIL-1 corresponds to the box counting problem that we
call #BOXAnd, which we now define. The input to the
problem is a triple〈X , P, Q〉. The problem #BOXAnd is
to compute|B(P ∧ Q)|: the number of boxes inBX that
contain at least one point from each ofP andQ. In this
section we prove that #BOXAnd is #P-complete, and then
we present an FPRAS for it.

5.1. Hardness Result for#BOXAnd

It is easy to see that #BOXAnd is in #P: given a partic-
ular boxb ∈ BX , it is simple to verify thatb contains a
point from bothP andQ. We now prove #P-completeness
by reducing from themonotone DNF counting problem
(#MDNF), shown to be #P-complete by Valiant (1979). An
instance of #MDNF is a monotone boolean formulaF (i.e.
with no negated literals) in disjunctive normal form, and
an algorithm for this problem is to output the number of
satisfying assignments ofF .

Let F be a monotone DNF formula inn variables withm
monotone termst1, t2, . . . , tm. Let S(F ) denote the set
of all satisfying assignments ofF . ThenS(F ) =

⋃

i S(ti).
Each monotone termt can be identified with ann-bit binary
vector ~vt as follows: ~vt = v1v2 . . . vn wherevi = 1 if
xi ∈ t andvi = 0 if xi 6∈ t. Then, sincet is monotone,
the set of satisfying assignments fort, S(t) = {~a | ~a ≥
~vt}. (For twon-bit vectors~u = (u1, u2, . . . , un) and~v =
(v1, v2, . . . , vn), ~u ≥ ~v iff ui ≥ vi for all 1 ≤ i ≤ n.)

Theorem 2 #BOXAnd is #P-complete.

Proof: We have already established that #BOXAnd is in
#P. We now show that #BOXAnd is #P-hard by reducing
#MDNF to a special case of #BOXAnd whereX = Hn =
{0, 1}n. The reductionf takes a formulaF =

∨

1≤i≤m ti
and maps it to an instancef(F ) = 〈Hn, P, Q〉 whereP =
{~0} andQ = {~vt1 , ~vt2 , . . . , ~vtm

}.

We now argue that|S(F )| equals the number of solutions
to 〈Hn, P, Q〉 of #BOXAnd. Clearly,B(~0 ∧ ~v) = {(~0, ~u) |
~u ≥ ~v}. For any termti, ~a ∈ S(ti) ⇔ ~a ≥ ~vti

⇔ (~0,~a) ∈
B(~0∧~vti

). Thus the number of satisfying assignments ofF
= |

⋃

1≤i≤m S(ti)| = |
⋃

1≤i≤m B(~0∧ ~vti
)| = |B({~0}∧Q)|

= the number of solutions to〈Hn, P, Q〉.

5.2. An FPRAS for#BOXAnd

Our algorithm for estimating|B(P ∧ Q)| is based on the
general technique from Karp et al. (1989) on the union
of sets problem. In this problem, the goal is to take a de-
scription of m setsB1, . . . , Bm and estimate the size of
B =

⋃m
i=1 Bi. In order to apply their technique, three cri-

teria must be satisfied. First, for alli ∈ {1, . . . , m}, |Bi|

must be easily computed. Second, for alli ∈ {1, . . . , m},
we must be able to sample uniformly elements fromBi.
Finally, given anys ∈ B and anyi ∈ {1, . . . , m}, we must
be able to easily determine ifs ∈ Bi.

If the above criteria are satisfied, Karp et al.’s algorithm
proceeds as follows. First defineU = {(s, i) | s ∈
Bi and1 ≤ i ≤ m} (so |U | =

∑m
i=1 |Bi|). Define an-

other setG = {(s, i) | i is the smallest index such that
s ∈ Bi}. Then we haveG ⊆ U and |G| = |B|. Karp
et al.’s algorithm runs in trials. For each trial, first a set
Bi is chosen at random with probability|Bi|/|U |. Then
an elements ∈ Bi is chosen uniformly at random. These
two steps together uniformly sample a pair(s, i) from U .
Finally, if (s, i) ∈ G we increment a counterγ, otherwise
do nothing. The final estimate of|B| is |U |γ/S, whereS
is the number of samples drawn. The following theorem
bounds the error of this approximation.

Theorem 3 (Karp et al., 1989) If
S ≥ 4(|U |/|G|) ln(2/δ)/ε2, then

Pr [(1 − ε)|B| ≤ |U |γ/S ≤ (1 + ε)|B|] ≥ 1 − δ.

We now apply Karp et al.’s result to #BOXAnd. Recall
that for two pointsp, q ∈ X , B(p ∧ q) denotes the set of
boxes that contain bothp andq. Let W = |B(P ∧ Q)|.
Then W = |

⋃

p∈P,q∈Q B(p ∧ q)|. It is straightforward
to compute|B(p ∧ q)|. Given pointsp, q ∈ X , let ` =
(`1, . . . , `d) be the lower corner of the bounding box of
p andq, i.e. `i = min{pi, qi} for all i. Similarly define
u = (u1, . . . , ud) as the upper corner. Then|B(p ∧ q)| =
(

∏

1≤i≤d(`i + 1)
)(

∏

1≤i≤d(s − ui + 1)
)

. Since we can

exactly compute|B(p∧q)| for all (p, q) ∈ P ×Q and there
are onlyn2 such sets, we can easily choose a setB(p ∧ q)

with probability|B(p∧q)|/
(

∑

p∈P,q∈Q |B(p ∧ q)|
)

. Fur-

ther, since we can uniformly sample fromB(p ∧ q) by
uniformly selecting lower and upper corners, we can uni-
formly sample from the setU = {(p, q, c) | p ∈ P, q ∈
Q, c ∈ B(p ∧ q)}.

Note that|U | =
∑

p∈P,q∈Q |B(p ∧ q)|. Now consider all
the pairs(p, q) such thatp ∈ P andq ∈ Q. We define a
total order≺ on these pairs by sorting first byp’s index in
P , and then byq’s index inQ. I.e. given pointspi, pi′ ∈ P
andqj , qj′ ∈ Q, we define(pi, qj) ≺ (pi′ , qj′) iff i < i′ or
i = i′ andj < j′.

Consider another setG = {(p, q, c) ∈ U | there are no
pairs (p′, q′) ≺ (p, q) such thatc ∈ B(p′ ∧ q′)}. Then
|G| = |

⋃

p∈P,q∈Q B(p ∧ q)| = W . We check whether
(p, q, c) ∈ G in O(dn2) time by checkingc against each



setB(p∧ q) for all p ∈ P andq ∈ Q. Finally, we note that

|U | =
∑

p∈P,q∈Q

|B(p∧ q)| ≤ n2 max
p,q

|B(p∧ q)| ≤ n2|G| .

(1)

Thus by drawing a sufficient number of samples(p, q, c)
uniformly fromU and incrementingγ when(p, q, c) ∈ G,
we know thatŴ = |U |γ/S is anε-good approximation of
W , as stated in the following theorem. SinceS, the time to
draw each sample, and the time to check each sample for
membership inG are all polynomial inn, d, log s, 1/ε, and
1/δ, our algorithm for #BOXAnd is an FPRAS.

Theorem 4 If S ≥ 4n2 ln(2/δ)/ε2, then

Pr
[

(1 − ε)W ≤ Ŵ = |U |γ/S ≤ (1 + ε)W
]

≥ 1 − δ.

Proof: Directly from application of Equation (1) to Theo-
rem 3.

Our algorithm as presented has running time
O(n4d(log s) ln(1/δ)/ε2) since it takesO(dn2) steps
to check each sample for membership inG. However, it
is possible to check for membership inG in time O(dn).
Given a triple(pi, qj , c) sampled fromU , first check all
pointspi′ ∈ P that are contained inc. If i′ < i for some
pi′ ∈ c, then (pi′ , qj) ≺ (pi, qj) and (pi, qj, c) 6∈ G.
If there does not exist such api′ , then check all points
qj′ ∈ Q that are contained inc. Again, if j′ < j for
someqj′ ∈ c, then(pi, qj′) ≺ (pi, qj) and(pi, qj , c) 6∈ G.
If no such qj′ exists, then(pi, qj , c) ∈ G. This check
requires timeO(dn), reducing the total running time to
O(n3d(log s) ln(1/δ)/ε2).

To further reduce time complexity, we can adapt Karp
et al.’s “self-adjusting coverage algorithm” (a more ef-
ficient algorithm for the union of sets problem) to
get an algorithm2 for #BOXAnd with running time
O(n2d(log s) ln(1/δ)/ε2).

5.3. Discussion

According to Observation 1,k∧(P, Q) is a kernel since it
is the dot product of two remapped vectors. But there is
no guarantee that the Gram matrix computed by our ap-
proximation algorithm is positive semidefinite. However,
it is reasonable to believe that ifε is small andk∧’s Gram
matrix has no zero Eigenvalues, the approximated matrix
would not adversely affect SVM optimization. In fact, in
our experiments, our approximate kernel works very well
when we setε = 0.1.

Another observation about our kernel is that its Gram ma-
trix potentially can have large diagonal elements relative

2For brevity, we omit the details of the self-adjusting algo-
rithm since it is similar to the one already presented.

to the off-diagonal elements.k∧(P, Q) is the number of
boxes that contain a point fromP and a point fromQ. If
few points fromP andQ are close to each other,k∧(P, Q)
will be much smaller thank∧(P, P ) andk∧(Q, Q). This
worsens whend is large. For example, in our Musk ex-
periments, the ratio of diagonal entries in the kernel matrix
to the off-diagonal entries was often around1050. In prac-
tice, SVMs do not work well with diagonally dominated
Gram matrices. To solve this problem, Schölkopf et al.
(2002) propose first using a nonlinear function to reduce
the value of each matrix element, such as a sub-polynomial
functionϕ(x) = sign(x) · |x|ρ with 0 < ρ < 1. To then
get a positive definite Gram matrix, they use the empirical
kernel mapφn(x) = (k′(x, x1), k

′(x, x2), · · · , k′(x, xn)),
wherek′(x, xi) = ϕ(k(x, xi)). Finally they apply the ker-
nel kemp(x, y) = φn(x) · φn(y). In the empirical kernel,
the set{x1, · · · , xn} can consist of all training and testing
bags (referred to astransduction) or of only the training
bags. We applied this method withk∧ to address our diago-
nal dominance problem (see Section 6.4). Also, sincekemp

is always a kernel no matter whatk is, with this method we
do not need to worry about whether ourε-approximation of
k∧ is really a kernel.

6. Experimental Results

To compare our kernel to the algorithm GMIL-1 of Scott
et al. (2003) and GMIL-2 of Tao and Scott (2004), we
tested our kernel with SVMlight (Joachims, 1999) on a sub-
set of the data sets they used: content-based image retrieval
(real data) and predicting when drugs would bind at mul-
tiple sites of a molecule (simulated data). We also tested
our kernel on the protein data used by Wang et al. (2004).
All these data sets have dimension at most 8, since GMIL-
1 and GMIL-2 cannot scale well to higher dimensions. To
evaluate our algorithm on high-dimensional data, we also
tested on simulated multi-site binding data and the Musk
data sets from the UCI repository (Blake et al., 2004). In
all our tests, we approximatedk∧ using our self-adjusting
approximation algorithm withε = 0.1 andδ = 0.01.

6.1. Content-Based Image Retrieval

In content-based image retrieval (CBIR), the user presents
examples of desired images, and the task is to determine
commonalities among the query images and retrieve sim-
ilar ones from the database. Maron and Ratan (1998) ex-
plored the use of conventional MIL for CBIR. They filtered
and subsampled the images and then extracted “blobs”
(groups ofm adjacent pixels), which were mapped to one
point in a bag. Then they used the algorithm diverse density
(DD) (Maron & Lozano-Pérez, 1998) to learn a hypothesis
and find candidate images in the database. This work was
later extended by Zhang et al. (2002).



Table 1.Generalization error for CBIR (top), protein (middle),
and drug affinity (bottom) learning tasks.

Task k∧ GMIL-1 GMIL-2 EMDD DD
sunset 0.088 0.095 0.098 0.096 0.099
conj. 0.108 0.134 0.147 0.215 0.181
protein 0.213 N/A 0.251 0.338 0.608
5-dim 0.205 0.212 0.218 0.191 0.196
10-dim 0.175 N/A N/A 0.223 0.216
20-dim 0.207 N/A N/A 0.268 0.255

We experimented with the two CBIR tasks used by Scott et
al. One is the “sunset” task: to distinguish images contain-
ing sunsets from those not containing sunsets. Like Zhang
et al., Scott et al. built 30 random testing sets of 720 exam-
ples (120 positives and 600 negatives): 150 negatives each
from the waterfall, mountain, field, and flower sets. Each of
30 training sets consisted of 50 positives and 50 negatives.

Another CBIR task Scott et al. experimented with was to
test a conjunctive CBIR concept, where the goal was to dis-
tinguish images containing a field with no sky from those
containing a field and sky or containing no field. Zhang
et al.’s field images that contained the sky were relabeled
from positive to negative. Each training set had 6 bags of
each of flower, mountain, sunset, and waterfall for nega-
tives, and had around 30 fields, 6 of them negative and the
rest positive. Each negative test set had 150 bags of each
of flower, mountain, sunset, and waterfall. Also, each test
set had 120 fields, around 50 serving as positives and the
remainder as negatives.

The top two rows of Table 1 summarize the prediction er-
ror of our algorithm (“k∧”), GMIL-1, and GMIL-2. For
comparison purposes, we also give results for the algo-
rithms Diverse Density (Maron & Lozano-Pérez, 1998) and
EMDD (Zhang & Goldman, 2001) that operate in the con-
ventional MIL model. The sunset task fits well into the
conventional MIL model; hence there is little difference in
performance between any of the algorithms on this data set.
But since the conjunctive task requires identifying images
that have a field and have no sky, we see that the general-
ized model is required3. We also note that the use of an
SVM improved prediction accuracy when compared to all
algorithms, including GMIL-1 and GMIL-2, which use the
same hypothesis space as our algorithm.

6.2. Identifying Trx-fold Proteins

The low conservation of primary sequence in protein super-
families such as Thioredoxin-fold (Trx-fold) makes con-
ventional modeling methods difficult to use. Wang et al.
(2004) propose using multiple-instance learning as a tool
for identification of new Trx-fold proteins. They mapped

3Scott et al. (2003) showed that repulsion points are required
for this learning task.

each protein’s primary sequence to a bag in the following
way. First, they found in each sequence the primary se-
quence motif (typically CxxC) that is known to exist in
all Trx-fold proteins. They then extracted a window of
size 214 around it (30 residues upstream, 180 downstream)
and aligned these windows around the motif. They then
mapped all sequences to 8-dimensional profiles based on
the numeric properties of Kim et al. (2000) and used them
as inputs to the multiple-instance learning algorithm.

Wang et al. (2004) used GMIL-2 to perform cross-
validation tests: 20-fold CV on 20 postivies and 8-fold CV
on 160 negatives. So in each round, they trained GMIL-2
on 19 positive proteins plus one of 8 sets of negative pro-
teins, and tested on the held-out positive protein plus the
remaining 7 sets of negative proteins. They repeated this
for each of the 8 sets of negative proteins. To compare
with their results, we performed the same tests with our
kernel, EMDD and DD (Table 1).

6.3. Multi-Site Drug Binding Affinity

Dietterich et al. (1997) introduced the conventional MIL
model motivated by predicting whether a conformation of
a particular molecule would bind to a single site in another
molecule. They also described an open problem of how to
predict drugs that bind at multiple sites in a single molecule
by fitting in several of them simultaneously.

Scott et al. used a generalization of the synthetic data of
Dooly et al. (2002) to reflect the notion of drugs where
a molecule must bind at multiple sites to be labeled posi-
tive. Dooly et al. created their data by first generating a sin-
gle “artificial receptor”t. Then “artificial molecules” (de-
notedBi) were created, each with 3–5 instances per bag.
The label of bagBi was determined as follows. For each
Bij ∈ Bi, they computedEBij

, which is the binding en-
ergy ofBij to t. They then identified the instanceBij ∈ Bi

that most strongly binds tot and setEBi
= EBij

. They
then normalizedEBi

to [0, 1] and thresholded it at1/2 to
get a binary label as to whether the molecule binds att.
In the generalization used by Scott et al., there are multi-
ple target points (“subtargets”), each of which must bind to
some instance in a bag for the bag to be positive. I.e. bag
Bi’s label is positive iff each subtarget induces a normal-
ized binding energy of at least1/2 in some pointBij ∈ Bi.

Scott et al. used Dooly et al.’s modified data generator to
build ten 5-dimensional data sets (200 training bags and
200 testing bags), each with 4 subtargets. To test how well
our kernel handles higher-dimensional data, we also gener-
ated data with dimension 10 and 20, each with 5 subtargets.
As with the 5-dimensional data, ten sets were generated,
each with 200 training bags and 200 testing bags. Results
are at the bottom of Table 1.



6.4. Musk Data Sets

Finally, we tested on the Musk data sets from the UCI
repository (Blake et al., 2004), which represent different
conformations of various molecules, labeled according to
whether they exhibit a “musk-like” odor when smelled by a
human expert. Most results reported by others on this data
set are based on 10-fold cross-validation on the 92 bags.
We performed 10-fold cross-validation experiments on the
same 10 partitions used by Dietterich et al. (1997).

For the Musk experiments, the ratio of diagonal entries
in the kernel matrix to the off-diagonal entries was often
around1050. So we applied the method of Schölkopf et al.
(2002) to solve this problem. We used the sub-polynomial
function x1/50 to reduce the range of each entry in the
Gram matrices and then let SVMlight work with the em-
pirical kernels described in Section 5.3.

Table 2 summarizes our results and those from Andrews
et al. (2002) with mi-SVM and MI-SVM and their re-
sults with EMDD4. Results for DD come from Maron and
Lozano-Pérez (1998), and “IAPR” is the iterative axis-
parallel rectangle algorithm from Dietterich et al.

There are significant improvements when our empirical
kernels are used. The empirical kernel with transduction
has the second lowest error rate on Musk1 and the low-
est error rate on Musk2. Its performance is competitive
with IAPR, which is specially tuned for the Musk data sets.
Without transduction, our kernel has slightly higher error
rates, but it still has better performance compared to algo-
rithms from the conventional MIL model (except for IAPR
and DD on Musk 1).

Since our algorithm’s time complexity is linear ind and
quadratic inn, we expect our speed to be most competitive
whend is large andn is moderate. This is what we found
when comparing our algorithm (written in C++) to the Java
implementation of EMDD by Zhang and Goldman. For
the 10-dimensional binding affinity data, EMDD was 60%
faster than our algorithm5, but only 44% faster on the 20-
dimensional data. For Musk 2, EMDD was 24% slower
than our algorithm, and for Musk 1 it was 675% slower6.

4Andrews et al. (2002) point out that the EMDD experiments
of Zhang and Goldman (2001) were optimistically biased since
they used the test set to choose the final hypotheses. Thus An-
drews et al. reran those experiments. We also reran EMDD on the
same 10-fold partitioning used by us and Dietterich et al. Those
rates are worse than those in Table 2: 0.152 for Musk 1 and 0.206
for Musk 2, though we did not tune EMDD to minimize error.

5Training with SVMlight took less than ten seconds once the
kernel matrix was computed, while kernel computation took on
the order of minutes.

6Assuming that a Java implementation is at most 10 times
slower than a C++ implementation, our algorithm is thus arguably
competitive with EMDD on Musk 1.

Table 2.Classification error on the Musk data sets. EMDD, mi-
SVM, and MI-SVM are from Andrews et al. (2002), DD is from
Maron and Lozano-Pérez (1998), and IAPR is from Dietterich
et al. (1997).

Algorithms Musk 1 Musk 2
k∧ 0.176 0.227
k∧ emp non-transduction 0.120 0.118
k∧ emp transduction 0.088 0.097
EMDD 0.152 0.151
DD 0.120 0.160
mi-SVM 0.126 0.164
MI-SVM 0.221 0.157
IAPR 0.076 0.108

This occurred despite the fact that we computed the entire
Gram matrix a priori rather than simply computing the en-
tries as needed during SVM optimization. Further, since
each learning task in applications such as CBIR and drug
binding can be treated as a database query (the data set
stays fixed but each task involves a different labeling of the
training set), one could build the kernel matrix once for the
database and reuse it for each query. This would amortize
the cost of building the matrix. This is what we did in our
Musk experiments, so the total time spent by our algorithm
for all 10 folds was 2 hours for Musk 1 on a 750 MHz Sun
Blade (compared to 135 hours for EMDD) and 40 hours for
Musk 2 (compared to 485 hours for EMDD).

7. Conclusions

The conventional MIL model has proven to be a very pow-
erful one with many applications and efficient algorithms.
Algorithms GMIL-1 (Scott et al., 2003) and its faster vari-
ant GMIL-2 (Tao & Scott, 2004) in Scott et al.’s generaliza-
tion of the conventional MIL model have enjoyed success
in applications that cannot be represented in the conven-
tional MIL model. However, both algorithms are inher-
ently inefficient, preventing scaling to higher-dimensional
data. We formulated their algorithms as a kernel that can
be used with a support vector machine to learn concepts in
their model. We showed that such a kernel is hard to com-
pute in general, and then we presented an FPRAS for it.
Finally, we evaluated our kernel empirically.

Our results not only showed competitiveness with other al-
gorithms in terms of generalization error, but also in speed
(versus EMDD), especially for data of more than 20 di-
mensions. We also note that it is trivial to parallelize the
computation of our kernel to get an almost linear speedup.
Further, since each learning task in applications such as
CBIR and drug binding affinity can be treated as a database
query, one could build the kernel matrix once for the entire
database and reuse it for each query. This would amortize
the cost of building the matrix over many queries.



An open question that remains is: there are many results
bounding the generalization error of SVMs, but they as-
sume that the kernel is exactly computed. What effect does
an ε-approximate kernel (assuming it is a kernel) have on
generalization error?
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