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Abstract

A standard method for approximating aver-
ages in probabilistic models is to construct
a Markov chain in the product space of the
random variables with the desired equilib-
rium distribution. Since the number of con-
figurations in this space grows exponentially
with the number of random variables we of-
ten need to represent the distribution with
samples. In this paper we show that if
one is interested in averages over single vari-
ables only, an alternative Markov chain de-
fined on the much smaller “union space”,
which can be evolved exactly, becomes fea-
sible. The transition kernel of this Markov
chain is based on conditional distributions
for pairs of variables and we present ways to
approximate them using approximate infer-
ence algorithms such as mean field, factor-
ized neighbors and belief propagation. Ro-
bustness to these approximations and error
bounds on the estimates follow from stability
analysis for Markov chains. We also present
ideas on a new class of algorithms that iterate
between increasingly accurate estimates for
conditional and marginal distributions. Ex-
periments validate the proposed methods.

1. Introduction

Graphical models have proven a powerful paradigm
for modelling stochastic processes in artificial intelli-
gence, machine learning and other related fields. Of-
ten, models contain unobserved random variables and
in these cases inference becomes a core concern. For
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instance, learning in these “hidden variable models” is
typically performed in the context of the expectation-
maximization algorithm which needs inference of pos-
terior averages in the E-step. The computational com-
plexity of inference in graphical models, as measured
by the tree-width of the graph, grows exponentially
with the size of maximal cliques. This implies that ex-
act inference is tractable only for small or highly struc-
tured graphical models. For other graphical models
in which exact inference is infeasible, there are pro-
cedures that allow us to approximate the posterior
distribution. Popular approximations include both
optimization-based schemes like variational methods
and loopy belief propagation, as well as stochastic ones
like Markov chain Monte Carlo sampling.

In this work, we explore a new framework for ap-
proximate inference that applies if we only desire the
marginal distributions over single variables. This new
framework combines the strengths of both classes of
approximate inference schemes to obtain more accu-
rate approximations. In particular, an optimization-
based scheme is first used to obtain a family of con-
ditional probabilities that the posterior distribution
should satisfy (section 4). These are then combined
by running a Markov chain on the “union space” (sec-
tion 2) to give more approximate approximations to
the marginals. The conditionals are approximate and
possibly inconsistent—we will discuss robustness and
error bounds by performing a stability analysis on the
Markov chains (section 3).

Let X = {X1,Xo,...,Xn} be the unobserved vari-
ables, Y = {Y1,...,Yy} be the observed ones, and
P(X,Y) be a distribution over X,Y represented as a
graphical model. Given an observed value y for Y, we
are interested in the posterior distribution

P(X =z,Y =y)
Pv=y

Computing the full list of values of P(X = z|Y = y)

PX=z|]Y =y) =



for every value of x is infeasible in general. Fortu-
nately, we often do not need access to the individual
P(X = z|Y = y) entries, but rather we are inter-
ested in the posterior probability that a small group
of related variables X, takes on a particular value z:
P(X, = z4|Y = y). In this paper we will be interested
in marginals over single variables and pairs of neigh-
boring variables, i.e. for o = {i} or {7,j}. To simplify
notation, from here onwards we will drop the condi-
tioning on Y and references to the variables X, writing
p(x) = P(X = 2lY = y), piles) = P(X; = 2] = y),
and P”(ZL',LLTJ) = P(XZ = IIJ1|XJ = iCj,Y = y)

2. Markov Chains on Union Spaces

Markov chain Monte Carlo sampling is a standard
technique for approximate inference in graphical mod-
els. Typically the Markov chain is defined on the prod-
uct space of the variables,

X=X (2)

where X is the space of values that the variable X; can
take on. The size of this state space scales exponen-
tially in the number of variables N—if each variable X
can take on D values, there are DV states. As a result
direct evaluation of the Markov chain is intractable,
and it is used instead to define a procedure to obtain
samples from the posterior distribution. These sam-
ples can then be used to estimate the desired function-
als or marginals of the posterior distribution. Unfor-
tunately such sampling procedures are often time con-
suming, and the estimates suffer from high variance
which decreases only as 1/S with S the total number
of independent samples.

Since we are only interested in marginal distributions
it is possible to consider an alternate Markov chain
that allows exact evaluation and directly gives the de-
sired marginal distributions. First let us assume that
we have access to the exact conditional distributions
P,;(z;|z;). As these are just as expensive to obtain as
the marginals themselves, we will need to approximate
them, which is the topic of later sections.

The Markov chain is defined over the union space of
the variables, given by

N
S = U {(i,2:) : 2; € X} (3)

Each state (4, z;) in the union space can be understood
as choosing a particular random variable X; and an
assignment x;. Containing only N x D elements, the

union space is much smaller than the product space
and as such allows for exact evaluation of the Markov
chain without sampling.

Let g; be a distribution over {1,2,..., N} and m;; be
an ergodic transition kernel that leaves ¢; invariant
(see appendix A for details). Consider the following
transition kernel for the union space:

T(iywilj, x5) = T(wili, j, ;) T(ilg, x5) = Pij (@l w;)m 4

(4)
That is, given (j,x;), we first choose the next variable
i according to |, then we choose a value for z; ac-
cording to the conditional P;;(z;|x;). Note that we
will not have 7, ; depend on the actual state z; which
will prove convenient later on. We can now show that
the following is an invariant distribution of T

Qi, i) = qipi(xi) (5)

where p;(z;) is the desired marginal distribution of
variable i. Moreover, if T' is ergodic then ¢;p;(z;) will
be the unique equilibrium distribution of the Markov
chain. In particular, starting from any initial distribu-
tion QY, we may simulate the Markov chain by direct
calculation,

QtJrl(iaxi) — ZT(Zaszja xj)Qt(jaxj) (6)
Jyj

and we will have Q' — Q as t — oo. Finally, we may
obtain the marginal distributions using;:

¢ = > Q') (7)

Q' (i,z:)/q; (8)

for a sufficiently large value of ¢. This is the basic
Markov chain on union space (MCUS) algorithm.

pi(zs) =

It is sometimes convenient to re-express the computa-
tions (6) directly in terms of updates to the marginal
distributions. First notice that the evolution of the ¢!
distributions depends only on 7;; and crucially, not on
P;j(x;|z;) (this can be seen by combining (6) and (7)
and using D P;j(zi|z;) = 1). Thus, we may first run
a separate Markov chain to compute the equilibrium
distribution ¢; of 7;);, and then use ¢; in place of ¢ to
run the Markov chain on the marginals. In particular,
we start from the initial distribution

Q"(i, ;) = qipy () 9)

Substituting (4) and (9) into (6), noting that ¢! = ¢;
for all ¢ (since this is invariant to ;;), and dividing
both sides by ¢;, we get

Py @) = Y wia Y P wile)py(as) - (10)



where the weights w;|; are defined as

|95

qi

(11)

Wili =

This definition is consistent with what is called the
“time reversed” or “dual” transition matrix in the lit-
erature. In the present case it has a simple and elegant
interpretation. Each node j gives a prediction of p;(x;)
based on its own marginal p;(x;) and the conditional
P;;(zi|z;). These estimates are then averaged to give
the new estimate for p;(x;) using weights wj);.
Note that both formulations of MCUS are equivalent,
since we may recover 7;|; from w;|; and vice versa by
using (11) and noting that w;|; and 7;; have the same
equilibrium distribution ¢;. We may thus simply use
the formulation that expresses our prior beliefs most
easily. The choice of values for m;; or w;; will affect
only the mixing time since the obtained marginals are
exact. However, as we shall see next, in the approxi-
mate case this choice will also affect the approximation
accuracy.

Since we do not in general have access to the exact con-
ditional distributions P;j(x;|z;), we may instead re-
place them with approximate conditionals ﬁij (xi|z).
In section 4 we describe the various approximations we
can make to obtain these conditional distributions. An
important result of our formulation is that our Markov
chain is still well defined and will converge to some
marginal distributions (assuming ergodicity), since we
never required P;;(z;|z;) to be exact or even internally
consistent. However, the marginals computed by (6)
or (10) using approximate conditionals will not be ex-
act and the approximation accuracy will depend on
both the error in the conditionals, and our choice of
mi)j or wj;- In section 3 we give bounds on the accu-
racy of the marginals in terms of the accuracy of the
conditionals.

Taking the view that the Markov chain updates of
(10) just take a weighted average of predictions com-
ing from each node j, it thus makes sense to put
more weight on nodes j for which reliable conditionals
P;j(x;|z;) are available. In particular, nodes that are
close in the graph are likely to have better estimates.
Also, if one has highly accurate estimates for the con-
ditionals transiting out of a particular node J, then
it makes sense to choose the wj|; relatively large. In

section 4 we test these intuitions empirically.

3. Stability and Error Bounds

A natural question to ask at this point is whether
small perturbations in the conditional probabilities

can cause “large” changes in the marginal distribu-
tions, i.e. we want to study the stability of the equilib-
rium distribution of the Markov chain. In the following
we will review some literature on the stability analysis
of irreducible Markov chains described in Ipsen and
Meyer (1994) and adapt them to the problem under
study.

Define new indices a, b etc. by flattening the indices
of the Markov chain: a = (i,z;). Also define a (not
necessarily small) perturbation by,

T=T+E (12)

where T is the DN x DN dimensional transition ma-
trix Tap = Pyj(w|z;)m;); and where the perturbation
E is defined such that both 7" and T are valid transi-
tion matrices. Since the fixed point of the perturbed
Markov chain is again a set of marginal probabilities it
is easy to see that the maximal change in the equilib-
rium distribution is bounded by 1, || @ —Q ||< 1 where
Q (with Q. = gipi(x;)) and Q are the equilibrium dis-
tributions of T and T respectively. The infinity norm
|| - || which we will use throughout this paper is defined
as

I = max () (13)
In the following we will also use the infinity norm for
matrices defined as,

| M = max (Z |Mab|> (14)
b

Following Ipsen and Meyer (1994) we will call a
Markov chain absolutely stable if there exists a finite
constant (condition number) x such that,

lQ-Ql<x|E| (15)

Various expressions for the condition number x have
been derived in the literature. The one we have found
to give the tightest bound was k = max, |(I — T +
Q1) — Q17|,,. To convert this into a bound for
the marginals {p;(x;)} we first note that,

qipi(xi) > (miin Qi) pi(zs) =
Q=@ (wing) Ip-51  (16)
Using this, we arrive at,

lp=pl<w IEN & =x/(ming)  (7)

This bound on the marginal distributions tells us that
small changes in the conditional distributions can only



cause small errors in the marginal distributions com-
puted by MCUS if £’ is small, i.e. the algorithm is sta-
ble in that case. This result is valid for any estimate
of the conditional distributions with 7T some transi-
tion matrix based on possibly inconsistent conditional
distributions and T is a small perturbation.

There is however also a second interpretation of the
bound where we set T to be transition matrix based
on the exact conditional distributions and 7" our esti-
mate of it!. Assume furthermore that we are given
a bound on the error of the transition matrix?: ||
T —T ||=|| E ||< B. Then, the bound in (17) will
convert B into an error bound on the marginal distri-
butions computed by MCUS: || p — p ||< «'B. Thus,
we can expect the error in the estimated marginal dis-
tributions to smoothly increase when the error in the
estimated conditional distributions is increased.

4. Approximating the Conditionals

The proposed MCUS procedure is only practical if we
can find accurate estimates for the conditional distri-
butions P;;(z;|x;). In this section we will propose and
test some methods for that purpose.

The general procedure relies on the existence of some
approximate inference algorithm A that computes ap-
proximate marginals p;(x;). If we condition node j to
state Z; and run algorithm A on this slightly altered
model, we get estimates for the conditional distribu-
tions P;;(x;|Z;). Repeating this procedure N x D times
we calculate estimates for all conditional distributions.
Finally, in order to employ the MCUS procedure we
need to decide on the weights w;.

In the following we will address the following three is-
sues: 1) What should our choice of the weights wj;);
be? 2) How does the performance of MCUS depend
on the approximating algorithm A7 3) Can we make
the method of conditioning described above more effi-
cient? All experiments are ran on binary {£1} Markov
random fields with random biases and interactions.

Experiment 1: choice of weights.
To study the effect of choosing different sets of weights

We define T to be the approximated transition matrix
because &’ is computed using properties of T', which unlike
T is the transition matrix we have access to.

2Assume we have an approximate inference algorithm
that has an associated error bound on the marginal distri-
butions it computes. For instance, we could use the algo-
rithm proposed in (Leisink & Kappen, 2003) to compute
such a bound. If we use this algorithm to compute con-
ditional distributions by separately conditioning on each
state of each node, then the bound on the marginals gets
converted into a bound on the conditionals.
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Figure 1. Dependency of MCUS performance on included
transitions. On the x-axis we vary the neighborhood size
of each conditional distribution (increasing to the right).

wj|; on the final accuracy of the approximation we per-
formed the following experiment on a 10 x 10 square
grid. We sampled random interactions from a Gaus-
sian distribution with std. ow = 0.5, while biases
were sampled from a Gaussian distribution with std.
0o = 0.5. To compute approximate conditional distri-
butions we ran loopy BP (Yedidia et al., 2000) N x D
times by separately conditioning every node on both
states. The MCUS algorithm was used to compute
marginal distributions p;(z;). For each node ¢ the
weights w;|; were constructed by uniformly weighting
nodes inside a certain neighborhood around it. Figure
1 shows the dependence of the final accuracy of MCUS
as we increase this neighborhood size, starting with the
Markov blanket until finally all nodes are included. We
conclude that including larger neighborhoods deterio-
rates performance, presumably because our estimates
of the conditional distributions are less reliable. This
fact argues for including only the Markov blanket of a
node ¢ as non-zero entries in wj|; as a natural choice.
In the absence of further information on the reliabil-
ity of this restricted set of conditionals we set their
weights equally.

Experiment 2: approximate inference methods.
We study the accuracy of MCUS with conditionals
computed by three different approximate inference al-
gorithms: mean field (MF), factorized neighbors® (FN)
and belief propagation (BP). In the experiments here
we considered 2 types of graphical models: fully con-
nected models and square grids with periodic bound-
ary conditions* with a varying number of nodes. We

3In FN (Rosen-Zvi & Jordan, 2003) we iter-
ate estimates of marginals as follows, pit'(z;) =
ZINi P(zilen,) [ en, pi(z;) where N; is the Markov
blanket of ¢ and the conditional distributions P(z;|zas,)
are exact.

“Note that this is different than the boundary condi-



sampled interactions W;; and biases a; from a uni-
form distribution in the interval [—1,1]. The weights
wj|; were set uniformly on the Markov blanket of each
node ¢. Conditional distributions were computed by
conditioning each node to each state and running ap-
proximate inference algorithm A with A4 being MF,
FN or BP.

(o) é 1‘0 1‘5 2‘0 2‘5 éO
Number of Nodes

Figure 2. The ratio between the average errors of marginals
computed by MCUS+.A and the errors of marginals com-
puted by A. Results for both the fully connected graph
(solid lines) and periodic grids (dashed lines) are shown as
a function of N, the number of nodes in the graph. Circles
indicate MF, triangles indicate FN and stars indicate BP.
Note that 1) the dashed lines for BP and FN overlap after
N =9 and 2) the solid line for FN is missing because this
method is infeasible for fully connected graphs.

In figure 2 we show the relative improvements of
MCUS+A over A. The results are averaged over
1000 random instantiations of the graphical mod-
els. First note that the relative improvement for
MF (circles) is always smaller than that for BP and
FN (stars/triangles). Further, the MCUS+BP and
MCUS+FN algorithms perform significantly better
than BP and FN (at least twice as good) over a wide
range of network sizes. For fully connected graphs,
as the number of nodes N grows the relative improve-
ment of MCUS+A over A vanishes. The reason is that
since the number of neighbors of each node increases
with IV, conditioning will have a diminishing effect.
For square grids, the relative improvement reaches
a plateau, since the number of neighbors stays con-
stant, which implies that fixing a node to a particular
state will still have an impact on it neighbors, even as
N — oco. Many graphical models are of the latter kind
so we expect MCUS to be a useful improvement over
the corresponding approximate inference algorithms.

In Figure 3 we present the absolute errors of MCUS+.A4
as a function of the errors of A on a 5 x 5 grid (stars).

tions imposed on the square grids used in the other exper-
iments.
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Figure 3. Errors of the MCUS+.4 marginals of single nodes
as a function of the errors of A marginals of single nodes
ina 5 x5 grid (stars). Top plot shows results for A = BP,
middle plot for FN and bottom plot for MF. The errors
of the MCUS+.4 marginals of neighboring pairs are also
presented (circles). 45-degree lines indicate equal errors.

Note that the mean relative improvement of the MCUS
algorithm is constant over a wide range of absolute er-
rors, showing only small variation around the mean.
This result conveys that MCUS not only performs sig-
nificantly better (than BP and FN), its performance
is better consistently and reliably.

The MCUS algorithm provides a straightforward way
to estimate posterior marginals of pairs of nodes. One
can use the estimated conditionals, P;;-‘(xi |z;), and the

MCUS+A marginals, prUSJrA(xi), and combine them
to estimate the marginal of a pair as p?EU%A(xi, z;) =
503y (il i A ) + g (| )Pt A (2). - We
compared the result with an estimate obtained simi-
larly, but using the marginals obtained from algorithm
A directly (i.e. without using MCUS). Results on the
5 x 5 grid for neighboring pairs of nodes are shown as
circles in figure 3.



The MCUS framework gave the best performance if
conditionals were estimated using BP: the averaged
error of BP marginals is 1.8 - 107 while the averaged
error of MCUS+BP is only 0.9 - 1076, To get an idea
of the tightness of the bound proposed in section 3 we
also calculated its average value for this case: 2.4-107°.
This is unfortunately an order of magnitude above the
actual error.

Experiment 3: improving the efficiency.

For some applications, running algorithm A N x D
times may be too expensive. A cheaper variation on
the above method is to run algorithm A first to get
all the (approximate) marginals, not conditioning any
node to any state. Next, fixate all the quantities of
interest (e.g. marginals in MF, messages in BP) out-
side a certain neighborhood (e.g. Markov blanket) of
a node 7 to the values computed in this “un-clamped”
run. Within this neighborhood, condition the center
node ¢ to all its possible values and run A on this sub-
graph, including but not changing the quantities out-
side the neighborhood. This approximation ignores
the effect that conditioning has on the nodes outside
the neighborhood, but is much more efficient since only
local quantities need to be computed. In fact, the com-
plexity of this algorithm scales no worse than that of
the original algorithm A. In this experiment we val-
idate this idea by showing that the accuracy of the
MCUS procedure based on these approximated condi-
tionals saturates quickly with growing neighborhood
size.
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Figure 4. Dependency of MCUS performance on applying
conditioning only to a restricted neighborhood.

We generated potentials on a 10 x 10 square grid us-
ing the same procedure as described in the previous
experiment with oy = 1 and o, = 1. First BP
was run without conditioning to compute approximate
marginals pfF (x;). Next, for each node we condition on
each of its states and update the messages of BP on
a restricted neighborhood only (e.g. nearest neigh-
bors, neighbors plus next-to-nearest neighbors etc.)

while keeping all messages outside that neighborhood
fixed. The resulting error of the marginals resulting
from MCUS based on these conditionals is shown in
figure 4 as a function of increasing neighborhood size
(weights wj|; were chosen uniform on the Markov blan-
ket). Clearly, only updating the messages in a small
neighborhood around a node is sufficient to account for
most of the improved accuracy that MCUS achieves.

5. Iterating Conditionals and Marginals

In the previous section we have described a way to
compute approximate conditional distributions based
on some approximate inference algorithm and the
method of conditioning. In this section we will de-
scribe an entirely different method to employ the
MCUS algorithm to iteratively improve estimates of
marginal distributions on single variables. We will re-
fer to this family of algorithms as iterated MCUS or
IMCUS for short.

We first re-emphasize the fact that MCUS converts
estimates of conditional distributions into estimates of
marginal distributions. What is needed for an iterative
algorithm is a way to convert these marginal distribu-
tions back into improved estimates for the condition-
als. To that end we define a neighborhood around
each node 7, G;, in which we will compute conditional
distributions P;;(x;|z;). The influence of the “current
state” of the nodes outside G;, will be approximated
through some “boundary conditions” that depend on
marginals py(xy) with k& € G\G;.

We will now discuss two different methods for that
purpose, each corresponding to a variational approach
to approximate inference: MF and BP. We will de-
scribe the methods based on a Markov random field
with single node potentials v;(z;) and interaction po-
tentials 1;;(z;, ;). It is straightforward to generalize
this to other models.

5.1. Mean Field

In the plain vanilla MF approximation we iteratively
change the node potentials by

,l/;;&Jrl(xi) _ wi(xi)ezje/\fi ZI7 10g¢ij(ﬂciamj)P¥F’t(mi) (18)
and update the marginals according to p};F’tH(xi) o
Y (z;). We now generalize this idea and define a
neighborhood G; around each node i. We assume
that we have some current estimates of the marginals
p;[F’t(xj) available on all nodes of the graph. Then, for
all nodes in the neighborhood, G;, we change the node
potentials according to (18), but only including neigh-
bors not already in G;,. Now compute a distribution



Iterated MCUS

IlusMcC
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1 2 3 4

Figure 5. Comparison of two IMCUS methods with MF
and BP on a fully connected graph with 10 nodes. Black
bars represent mean error over 10 instantiations of the net-
work; white top portion represents 1 standard deviation.

Pg,(xzg,) within the neighborhood in the usual way—
a normalized product of edge and (possibly modified)
node potentials. Next compute conditionals as follows,

Dvg oy PO (26;)

Pij(zi|z;) =
! ! ngi\j Pg, (xgl)

(19)

These conditionals are then used in MCUS to find new
marginals which in turn are used to compute new con-
ditionals etc (until convergence).

Experiment 4: IMCUS with MF.

We experimented with two versions of the algorithm,
IMCUS+MF2 and IMCUS+MF*, based on different
neighborhoods. The first algorithm IMCUS+MF2
uses neighborhoods G;; consisting of i, a neighbor j
of i, and the edge between them. The conditional
P;j(x;|z;) is computed using the method just de-
scribed with neighborhood G;;. It should be noted that
in general there does not exist a solution where the es-
timates for the marginal distributions ZM Pg, (wi, ;)
on i are consistent for all neighbors j. This fact makes
MCUS a necessary ingredient of the algorithm. The
second algorithm IMCUS+MF* uses a star-like neigh-
borhood consisting of a node i, all of its neighbors
j and all edges (ij) connecting node i to a neighbor
7. Both variants always converged to reasonable esti-
mates in all our experiments.

The results on a 10 x 10 square grid are shown in fig-
ure 5 (the grid was generated by an identical proce-
dure as in section 4 with oy = 1 and o, = 0.5). We
clearly see a significant improvement in performance if
we increase the neighborhood and there is hope that by
choosing for instance spanning trees (instead of stars)
the performance may approach or exceed that of BP.

leJPS,t (1‘@)

5.2. Belief Propagation

In the usual formulation of BP we deal with messages.
However, since there is no procedure that converts
marginals into messages, we need to switch to a formu-
lation of BP that uses marginals directly. In Teh and
Welling (2002) the “Unified Propagation and Scaling”
(UPS) algorithm was proposed as a convergent alter-
native to BP. The idea is that the graph is divided
into (possibly overlapping) tree-structured subgraphs.
Given a tree-structured neighborhood G; around ¢, it-
erative scaling (IS) is used to compute a joint distribu-
tion on G; subject to the constraints that the marginals
on the nodes on the boundary of this subgraph remain
fixed to their values calculated in a previous iteration

i . Thus, like in the case of MF, this may be
viewed as an alternative procedure to incorporate the
influence of the “outside nodes” in G\G; into the neigh-
borhood G;.

From the joint distribution on G; we can now compute
conditional distributions P;;(x;|z;) and run MCUS
(using these conditionals) to get updated marginals
etc. It is however not hard to show that the fixed
points of UPS imply the fixed points of this IMCUS
algorithm, irrespective of the way the weights w;|; are
distributed over the nodes in G; (the reverse statement
seems harder to prove). This fact is not necessarily
true for the generalization where the sub-graph G; is
arbitrary (i.e. not tree-structured). If certain nodes
are members of different neighborhoods, the UPS pro-
cedure is no longer guaranteed to converge, due to
the fact that the updates in the different neighbor-
hoods can not be made consistent (this effect has in-
deed been verified experimentally). To resolve this we
propose the following IMCUS procedure. First col-
lect conditionals P;;(z;|x;), with j possibly residing in
more than one neighborhood; subsequently run MCUS
and iterate. We expect this procedure to converge to
increasingly accurate estimates of the marginals as we
increase the neighborhoods G;. We leave the imple-
mentation and evaluation for future research.

To summarize, we have shown that a combination of
MCUS and a method to incorporate the influence of
outside marginals into a neighborhood G; for each node
i, has resulted in a very general class of approximate
inference algorithms®. The convergence properties and
accuracy of the various algorithms remains to be stud-
ied in more depth.

®The factorized neighbors (FN) algorithm (Rosen-Zvi &
Jordan, 2003) can be viewed in this light as well. In that
case however, the IMCUS procedure does not generate a
new algorithm because fixed points of FN always imply
fixed points of IMCUS.



6. Discussion

Markov chains on union spaces have an interesting
analogue in the literature on “reversible jump MCMC”
which was developed for Bayesian model selection
(Green, 1995), (Green, 2003). Initial attempts to sam-
ple from spaces with different numbers of parameters
(corresponding to different models) were formulated
on product spaces before the union space formulation
was discovered. We want to emphasize however that
in that case the transition probabilities are exact and
the posterior probabilities are still estimated through
sampling, whereas in this paper we approximate the
transition probabilities and evolve the marginal distri-
butions without sampling.

An interesting question that we leave for future re-
search is whether the MCUS method can be extended
to estimate marginals on larger clusters of nodes, e.g.
pairs of neighboring nodes. The set of transition prob-
abilities that needs to be approximated is now much
larger and includes transitions between any marginal
distribution on subsets of nodes that one wants to rep-
resent.

We anticipate that the presented methods may also
have applications outside the field of approximate in-
ference.

A. Spectral Analysis for Markov Chains

The eigenvalues of a stochastic (transition) matrix
must satisfy |\;] < 1 (Bremaud, 1998). Irreducibility
means that there is only one eigenvalue with A = 1,
corresponding to the equilibrium distribution. Ape-
riodicity means that there are no eigenvalues with
[A\| = 1 other than A = 1. Ergocity means that the
MC is both irreducible and aperiodic.

The power-method iterates p?l =5 j Tijpz- until con-
vergence. If the MC is ergodic this method converges
to the unique equilibrium distribution. If the MC is
reducible it converges to an arbitrary linear combina-
tion of eigenvectors with A = 1. If the chain is periodic
it will switch between the eigenvectors with eigenval-
ues on the complex circle. However, the latter is easily
remedied by changing 77 = (1 — a)T + oI which pulls
all eigenvalues with |A\| = 1, X # 1 inside the com-
plex circle which implies that the power method for T”
converges to the eigen-vector of T' with A = 1. Finally,
the subdominant eigenvalue determines the speed of

convergence (or mixing rate) of the power method.

The transition kernel T'(i,z;|j,x;) = ;P (xi, x5)
has the structure of a generalized Hadamard prod-
uct. All eigenvalues of 7 will also be eigenvalues of

T. To see that, let {v*)} be the left-eigenvectors of
7 with eigen-value A(*) and note that 1(z;), the vec-
tor of all ones, are left eigen-vectors of P;; Vi,j with
iza oML (i)my Py (lay) =
)\(k)vj(-k) 1(z;). This has the important implication that
spectral properties of 7, such as irreducibility and ape-
riodicity carry over to T'.

eigen-values 1. Then, )
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