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Abstract

Many clustering algorithms fail when dealing
with high dimensional data. Principal com-
ponent analysis (PCA) is a popular dimen-
sionality reduction algorithm. However, it as-
sumes a single multivariate Gaussian model,
which provides a global linear projection of
the data. Mixture of probabilistic princi-
pal component analyzers (PPCA) provides
a better model to the clustering paradigm.
It provides a local linear PCA projection for
each multivariate Gaussian cluster compo-
nent. We extend this model to build hi-
erarchical mixtures of PPCA. Hierarchical
clustering provides a flexible representation
showing relationships among clusters in vari-
ous perceptual levels. We introduce an au-
tomated hierarchical mixture of PPCA al-
gorithm, which utilizes the integrated clas-
sification likelihood as a criterion for split-
ting and stopping the addition of hierarchi-
cal levels. An automated approach requires
automated methods for initialization, deter-
mining the number of principal component
dimensions, and determining when to split
clusters. We address each of these in the pa-
per. This automated approach results in a
coarse to fine local component model with
varying projections and with different num-
ber of dimensions for each cluster.

1. Introduction

Dimension reduction is an important problem. First,
usually not all the features are useful for producing a
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desired clustering. Some features are redundant, some
may be irrelevant. Second, dimension reduction can
save storage and time when dealing with data sets
with huge number of features. Dimension reduction
for unsupervised clustering is difficult, because we do
not have class labels.

There are two main approaches to reduce dimensions:
feature selection and feature transformation. Fea-
ture selection algorithms select the hopefully best fea-
ture subset that discovers “natural” groupings from
data (Dy & Brodley, 2000) (M. H. Law, 2002) (Mi-
tra et al., 2002). Feature transformation methods
transform data from the original d-dimensional feature
space to a new q-dimensional (q < d) feature space.
Principal component analysis (PCA) (Jolliffe, 1986) is
one of the most popular methods for feature transfor-
mation. However, PCA is limited since it only defines
a single global projection of the data. For complex
data, different clusters may need different projection
directions; hence, a mixture of local PCA models is
desirable. In fact, a hierarchical mixtures of models
is even better, because it can provide a coarse-to-fine
structure and give more flexibility. In this paper, we
introduce an automated algorithm that generates a hi-
erarchical mixtures of models.

Mixture of Probabilistic PCA (PPCA) models (Tip-
ping & Bishop, 1999a) is an extension to the Proba-
bilistic PCA model (Tipping & Bishop, 1999b), which
can determine the principal sub-space of the data
through maximum-likelihood estimation of the param-
eters in a Gaussian latent variable model. More-
over, it can be extended to a hierarchical represen-
tation as shown in (Bishop & Tipping, 1998). One
can also look at other mixture models, such as mix-
ture of factor analyzers (FA) (Ghahramani & Hinton,
1997), and mixture of independent component analyz-
ers(ICA) (Roberts & Penny, 2001). Mixtures of PPCA
is merely a special case of mixtures of FA, where PPCA



assumes an isotropic covariance matrix for noise while
FA assumes a diagonal covariance matrix for noise.

Previous work on hierarchical mixtures of models in-
clude building an interactive environment for visual-
ization (Bishop & Tipping, 1998) (Tino & Nabney,
2002). While the human-driven nature of their algo-
rithms is good for visualization, it may make the algo-
rithms expensive and slow, and can produce varying
results depending on the user. Moreover, the num-
ber of retained principal dimensions in a visualization
algorithm is limited to either one, two or three.

In this paper, we introduce an automated hierarchical
algorithm. As such, our algorithm allows the flexibility
on deciding the number of retained dimensions. Differ-
ent clusters can have potentially different dimensional-
ities, thus varying the dimensionality for each cluster
may lead to better performance. An automated ap-
proach requires automated methods for initialization,
determining the number of principal component di-
mensions, and determining when to split/merge clus-
ters. We address each of these in Section 3.

In section 2, we review the PPCA model, mixture of
PPCA, and hierarchical mixtures of PPCA. In section
3, we describe our automated hierarchical algorithm.
We, then, report our experimental results in section 4.
Finally, we present our conclusions and directions for
future work in Section 5.

2. Review on Probabilistic Principal
Component Analyzers (PPCA)

This section reviews the theory of PPCA, mixture of
PPCA, and hierarchical mixtures of PPCA.

2.1. PPCA

Conventional PCA seeks a q-dimensional (q < d) lin-
ear projection that best represents the data in a least-
squares sense. Consider a data set D of observed d-
dimensional vector D = {tn}, where n ∈ 1, ..., N . we
first compute the sample covariance matrix:

S = 1
N

∑N
n=1(tn−µ)(tn−µ)T , where µ = 1

N

∑N
n=1 tn.

Then, the q principal axes uj are given by the q dom-
inant eigenvectors (i.e. those with the q largest eigen-
values). The projected value of data tn is given by
xn = UT

q (tn − µ), where Uq = (u1, . . . ,uq). It can
be shown that PCA finds the linear projection that
maximizes the variance in the projected space.

Conventional PCA does not define a probability
model. PCA can be reformulated as a maximum like-
lihood solution to a latent variable model (Tipping

& Bishop, 1999b). Let x be a q-dimensional latent
variable. The observed variable t is then defined as
a linear transformation of x with additional noise ε:
t = Wx + µ + ε, Here W is a d × q linear transfor-
mation matrix, µ is a d-dimension vector that allows
t to have a non-zero mean. Both the latent variable
x and noise ε are assumed to be isotropic Gaussian:
p(x) ∼ N (0, Iq) and p(ε) ∼ N (0, σ2Id).

Then, the distribution of t is also Gaussian :

p(t) ∼ N (µ,WWT + σ2Id) (1)

One can compute the maximum-likelihood estimator
for the parameters µ, W and σ2 from data set D.

The log-likelihood under this model is: L =∑N
n=1 log[p(tn)].

The maximum-likelihood estimates for these parame-
ters are:

µML =
1
N

N∑
n=1

tn (2)

σ2
ML =

1
d − q

d∑
i=q+1

λi (3)

WML = Uq(Λq − σ2
MLI)1/2R (4)

where λq+1, . . . , λd are the smallest eigenvalues of sam-
ple covariance matrix S, the q columns in the d × q
orthogonal matrix Uq are the q dominant eigenvectors
of S, diagonal matrix Λq contains the corresponding q
largest eigenvalues, and R is an arbitrary q×q orthog-
onal matrix. We set R = I in our experiments.

2.2. Mixture of PPCA

Clustering using finite mixture models is a well-known
method(McLachlan & Peel, 2000). In this model,
one assumes that data is generated from a mixture
of component density functions, in which each compo-
nent density function p(t|i) represents a cluster. Now
that PPCA is defined as a probabilistic model, we can
model each mixture component with a single PPCA
distribution (Tipping & Bishop, 1999a). The proba-
bility density of the observed variable, t, is expressed
by:

p(t) =
k0∑

i=1

πip(t|µi, σ
2
i ,Wi) (5)

where p(t|µi, σ
2
i ,Wi) denotes a PPCA density func-

tion for component i, k0 is the number of compo-
nents, and πi is the mixing proportion of the mixture
component i (subject to the constraints: πi ≥ 0 and



∑k0
i=1 πi = 1). The log-likelihood of the observed data

is then given by:

L =
N∑

n=1

log{
k0∑

i=1

πip(tn|µi, σ
2
i ,Wi)} (6)

It is difficult to optimize (6), so we use the
Expectation-Maximization (EM) (Dempster et al.,
1977) algorithm to find a local maximum of (6). If
we hypothesize a set of indicator variables zni (also
known as “missing data”) specifying which model is
responsible for generating each data point tn, then the
log-likelihood of the complete-data is given by:

Lc =
N∑

n=1

k0∑
i=1

zni log{πip(tn|µi, σ
2
i ,Wi)} (7)

We apply the EM algorithm to compute the maximum-
likelihood estimation for parameters πi, µi, σ2

i and Wi

as follows:
E-step:
The posterior probability of data tn belonging to com-
ponent i, Rni is given by:

Rni = E[zni] =
πip(tn|µi, σ

2
i ,Wi)

p(tn)
(8)

where E[·] is the expected value operator.

M-step:

π̃i =
1
N

N∑
n=1

Rni (9)

µ̃i =
∑N

n=1 Rnitn∑N
n=1 Rni

(10)

To update σ2
i and Wi, we first compute the weighted

sample covariance matrices, given by:

Si =
∑N

n=1 Rni(tn − µ̃i)(tn − µ̃i)T∑N
n=1 Rni

(11)

then apply (3) and (4). If d is large, one should use
an alternative EM approach proposed in (Tipping &
Bishop, 1999b) to update σ2

i and Wi for speed up.

2.3. Hierarchical mixtures of PPCA

One can extend the mixture of PPCA models to a
hierarchical mixture models (Bishop & Tipping, 1998).
Consider an example of extending a two-level mixture
models to a three-level mixture models. Suppose each
PPCA component i in the second level is extended to

a group gi of PPCA components in the third level, the
probability density can be expressed as:

p(t) =
k0∑

i=1

πi

∑
j∈gi

πj|ip(t|µi,j , σ
2
i,j ,Wi,j), (12)

where p(t|µi,j , σ
2
i,j ,Wi,j) denotes a single PPCA com-

ponent, πj|i denotes the mixing proportion (subject to
the constraints πj|i ≥ 0 and

∑
j πj|i = 1). If “miss-

ing data” at the second level zni are known, then the
corresponding log-likelihood is given by:

N∑
n=1

k0∑
i=1

zni log{πi

∑
j∈gi

πj|ip(tn|µi,j , σ
2
i,j ,Wi,j)} (13)

To maximize the expectation of (13) with respect to
zni, we use an EM algorithm again. This has a simi-
lar form as the EM algorithm discussed in 2.2, except
that in the E-step, the posterior probability of data tn

belonging to component (i, j) is given by:

Rni,j = RniRnj|i (14)

and

Rnj|i =
πj|ip(tn|µi,j , σ

2
i,j ,Wi,j)∑

k∈gi
πk|ip(t|µi,k, σ2

i,k,Wi,k)
(15)

We can recursively apply the above approach to gener-
ate a hierarchy of mixtures of PPCA with any number
of levels.

3. Our automated hierarchical
algorithm

To build our hierarchy, we employ a divisive approach.
This way, we start from a coarse data representation
and then get a more and more fine data representation
until a stopping criterion is reached. One can also
build a hierarchy with an agglomerative algorithm.
However, to make an agglomerative approach prac-
tical in terms of time efficiency, it requires O(K2

max)
memory space, where Kmax is the number of clusters
in the initial partitions (Fraley & Raftery, 1998), and
in the worst case, agglomerative methods may start
at Kmax = N , where N is the number of data points.
Another advantage of a divisive approach is that it can
be parallelized easily.

There are several issues that need to be addressed for
an automated divisive hierarchical algorithm.

3.1. Building the hierarchy and determining
when to split clusters

We build the hierarchy as follows: in each level, we
perform an order identification test on each cluster to



see if it should be split into two children clusters in
the next level. In particular, we apply a hierarchical
mixtures of PPCA model described in section 2.3, with
the number of children clusters in gi as two. We then
compare the parent model with its two children based
on a criterion evaluation measure. If the two children
outperforms the parent model, we replace the parent
with its two off-springs in the next level, otherwise, we
copy the parent down unchanged into the next level,
and we will not consider to split that cluster in any
lower level. We repeat this process until either all the
single PPCA clusters in the last level cannot be split
into two or the number of clusters reaches Kmax.

This leads us to the question of “which criterion should
we use for splitting?” This question is similar to decid-
ing the number of clusters in a mixture model, which
is a difficult task that has not been completely re-
solved. There are many ways for accessing mixture
order, readers can refer to (McLachlan & Peel, 2000)
chapter 6 for a review. One cannot simply use the
maximum likelihood criterion to decide the number of
clusters, because this will lead to a final level where
each data point is a cluster (which is a case of over-
fitting). Some form of regularization (such as penalty
methods) is needed. Here, we utilize the integrated
classification likelihood (ICL) criterion proposed by
(Biernacki et al., 2000):

ICL = Lc − m log(N)/2 (16)

Lc is the complete-data log-likelihood as defined in
equation (7), m is the number of free parameters to
be estimated, and N is the number of data points.
Note that m varies with k. (Biernacki et al., 2000) es-
timated zni in equation (7) by one if argmaxjRnj = i
and zero otherwise (a MAP (maximum a posterior) es-
timate), whereas (McLachlan & Peel, 2000) estimated
zni by its conditional expectation Rni. We chose to
replace zni by Rni because this represents a “soft” 1

clustering solution to the mixture problem. Whereas
a MAP estimate of zni represents a “hard” cluster-
ing solution. The criterion we used is called ICL-BIC
in (McLachlan & Peel, 2000) and they showed that
it outperforms other criteria such as Bayesian infor-
mation criterion (BIC) (Schwarz, 1978), and Akaike’s
information criterion (Akaike, 1974).

ICL chooses the number of clusters to maximize Equa-
tion (16). ICL basically looks like the more famil-
iar BIC , but instead of penalizing the observed-data
log-likelihood L, we penalize the expectation of the

1“Soft” clustering means each data point can belong to
all clusters with some probability of membership, whereas
“hard” clustering means that each data point can belong
to only one cluster.

complete-data log-likelihood Lc . Recall that the ex-
pectation of Lc is equal to L+

∑N
n=1

∑k0
i=1 Rni log Rni

(L minus the estimated entropy of the fuzzy classifica-
tion matrix ((Rni)). ICL, thus, measures the observed-
data log-likelihood minus the degree of cluster overlap
minus the penalty for the complexity of the model pa-
rameters.

We choose ICL out of the several other ways to pe-
nalize log-likelihood for two main reasons. Firstly,
note that equation (6) contains the log of a sum-
mation. One cannot compute the observed-data log-
likelihood L for each component separately, as would
be required when determining the number of clusters
in the lower levels of the hierarchy. Therefore, in a
hierarchical model, it is difficult to apply some popu-
lar criteria based on the observed-data log-likelihood,
such as BIC, unless one chooses to forego the flexibility
of “soft” assignments in a mixture model by assigning
“hard” clustering in the lower levels. Secondly, previ-
ous experiments reported in (McLachlan & Peel, 2000)
chapter 6 showed that ICL outperforms other criteria.
(Biernacki et al., 2000) claimed that ICL appears to be
more robust than BIC due to the violation of some of
the mixture model assumptions, since BIC will tend to
overestimate the number of clusters regardless of the
cluster overlap if the true model is not in the family
of the assumed models. ICL, on the other hand, as
explained above penalizes overlaps between clusters.

For clarity, let us summarize the expressions we used
for computing ICL for a single PPCA component and
for its two offsprings:

ICL for component i is given by:
N∑

n=1

Rni log{πip(tn|µi, σ
2
i ,Wi)} − m1 log(N)

2
(17)

ICL for the two children of component i takes the form:
N∑

n=1

2∑
j=1

Rni,j log{πi,jp(tn|µi,j , σ
2
i,j ,Wi,j)} −

m2 log(N)
2

(18)

where Rni,j is defined in (14), similarly πi,j = πiπj|i,
m1 and m2 denote the number of free parameters for
component i and its two children components respec-
tively. Our approach for cluster order identification
is similar to the one used by X-means, a hierarchical
K-means algorithm (Pelleg & Moore, 2000). The two
main differences between our approach and their ap-
proach are: we use ICL rather than the BIC criterion,
and we apply a mixture of component models that as-
sumes soft membership.



Variants and Extensions Instead of splitting the
clusters into one or two at every level, one can extend
the approach described above by considering splitting
to k = one, two, three, or more clusters at every level
and apply ICL to pick the best k. One can also build
the hierarchy by merging clusters: start at the lowest
level by performing a flat clustering and ICL to de-
termine the number of clusters, and then merge the
clusters which lead to the largest likelihood, until all
the clusters are merged into one component.

3.2. Determining the number of principal
dimensions to be retained at each level

Recently some researchers presented methods for
choosing the intrinsic dimension of the data set for
mixtures of PPCA models (Bishop, 1999)(Bishop,
1998)(Minka, 2000). Those methods are for density
estimation. The number of dimensions picked by those
methods may be far more than one would use for fea-
ture reduction, and hence may not be appropriate for
dimension reduction (Minka, 2000). We introduce a
simple and fast method analogous to the dimension
reduction technique for conventional PCA. For com-
ponent i, the dimension qi to be retained in the corre-
sponding sub-components in the next level is the small-
est qi which allows the mean-square-error to be smaller
than a threshold, say 10%. In our experiment, we let
qi > 1, then qi is given by:

qi = argmin1<q<d(

∑q
j=1 λj

trace(Si)
> 90%) (19)

where Si is defined in equation (11), λj are the eigen-
values of Si. In this way, each cluster component can
have potentially different dimensionality, thus provid-
ing more flexibility.

3.3. Initialization

It is well known that the EM algorithm may converge
to local minima. Different initial parameter values can
lead to quite different estimates. Here, we apply 20
random starts to initialize the parameters. The de-
tails for initializing the parameters on the top level
are as follows: Given the number of clusters k, we
select random k data points as the initial centroids,
then assign all the data points tn to the nearest seed,
then we compute the corresponding posterior proba-
bility Rni by putting Rni = 1 if tn belong to centroid
i and Rni = 0 otherwise. Start from initial values of
Rni, where n = 1, . . . , N, and i = 1, . . . , k. Then, we
apply the M-step to update πi, µi, σi and Wi for each
i. We perform the EM algorithm until convergence
initialized with the above process 20 times, and pick
the one set of parameters which provided the largest

likelihood. The initialization of the model parameters
for the lower levels is similar to that presented above,
except that we compute the initial posterior proba-
bility Rni,j corresponding to sub-component j by set-
ting Rni,j = Rni if tn belongs to centroid (i, j) and
Rni,j = 0 otherwise.

3.4. Avoiding the spurious clusters

A common problem with the expectation maximiza-
tion of mixture models is dealing with “spurious clus-
ters”. A fitted component with very small mixing pro-
portion πi or singular covariance matrix may lead to a
relatively large local maximum, but indeed this com-
ponent is not useful in practice and should be consid-
ered as a “spurious cluster”.

Since we are working with a dimension reduction algo-
rithm, we need to deal with the singularity of the sam-
ple covariance matrices in the projected space. The
determinant of a matrix is equal to the product of its
eigenvalues. In our algorithm, if the qth largest eigen-
value of a cluster’s sample covariance matrix is less
than a small number (default 1e − 5), then we con-
sider that cluster as a spurious cluster.

4. Experiments

In the following experiments, we 1) investigate whether
mixtures of PPCA results in better clustering com-
pared to conventional PCA plus EM of multivariate
Gaussian mixtures, 2) examine the flexibility of a hi-
erarchical model, and 3) validate the appropriateness
of the clusters discovered at each level.

4.1. Data sets

We test our algorithm on three synthetic data sets (toy,
oil and chart) and six real data sets. Table 1 summa-
rizes the data set characteristics. Toy and oil data
sets are obtained from (Tipping, 1998) and were used
in (Bishop & Tipping, 1998) for data visualization. All
the other data sets are either from the UCI Machine
Learning Repository (Merz et al., 1996) or (Bay, 1999).

4.2. Evaluation Criteria

Since we know the true class labels, we can measure the
clustering quality by using measures such as normal-
ized mutual information (Strehl & Ghosh, 2002) and
Fowlkes-Mallows index (Fowlkes & Mallows, 1983).
We report results for both criteria because no evidence
show one is better than the other. These two criteria
measure the agreement between the labeled classes and
the estimated clusters. Both criteria are in the range



Table 1. Data set descriptions

Data set # of # of # of

Instance Features Classes

Toy 300 3 3

Oil 1000 12 3

Chart 600 60 6

Glass 214 9 6

Wine 178 13 3

Optical Digits 5620 64 10

Satellite Image 6435 36 6

Segmentation 2310 19 7

Letter 5000 16 26

[0, 1] and bigger value means better agreement. How-
ever, note that a labeled class is not necessarily uni-
modal, and if our algorithm finds this multi-modality,
the value of both criteria will become smaller.

• Normalized Mutual Information(NMI)
Mutual information MI(X,Y ) is a measure of
the amount of information shared between two
distributions. We normalize it by defining
NMI(X,Y ) = MI(X,Y )/

√
H(x)H(Y ), where

H(x) and H(Y ) denote the entropy of X and Y .
Let nij be the number of instances that are in
class i as well as in cluster j. Let ni. be the num-
ber of instances in class i and n.j be the number
of instances in cluster j. Given G classes and K
clusters, NMI is given by:

NMI =

∑G
i=1

∑K
j=1 nij log( Nnij

ni.n.j
)√

(
∑G

i=1 ni. log ni.

N )(
∑K

j=1 n.j log n.j

N )
(20)

• Fowlkes-Mallows index (FM index)
The Fowlkes-Mallows index is the geometric mean
of two probabilities: the probability that two ran-
dom instances are in the same cluster given they
are in the same class, and the probability that two
random instances are in the same class given they
are in the same cluster. Using the same notation
as presented above, the FM-index is given by:

FM =

∑G
i=1

∑K
j=1

(
nij

2

)
√∑G

i=1

(
ni.

2

)∑K
j=1

(
n.j

2

) (21)

4.3. Experimental Results

Since conventional PCA is one of most popular meth-
ods for feature reduction, we compare our algorithm
with PCA and EM hierarchical clustering. To remove

the effect of other factors, we use the same criterion
(ICL) to decide the number of clusters, the same ini-
tialization method, and also equation (19) to deter-
mine the retained dimensions in our implementation
for PCA+EM algorithm. Note that the number of re-
tained dimensions for PCA+EM is fixed for all clusters
in all levels. Table 2 shows the results for the lowest
level of PCA + hierarchical EM and for automated hi-
erarchical mixtures of PPCA. We present the results
with their NMI, FM, and the number of clusters in the
lowest level, K. (We set Kmax to be twice the number
of labeled classes.) We include the number of dimen-
sions, q, retained by conventional PCA in PCA+EM.
We do not provide a q column for Auto-PPCA because
we can not simply provide a single q value for Auto-
PPCA, since each cluster in the hierarchy has different
number of retained dimensions.

Table 2. The Results for PCA and PPCA
PCA + EM Auto-PPCA

Data NMI FM q K NMI FM K

toy .761 .773 2 2 .966 .987 3

oil .709 .736 5 7 .763 .777 7

chart .700 .596 9 8 .469 .474 2

glass .391 .406 4 6 .407 .547 6

opt.

digits .777 .666 21 19 .777 .690 12

sat.

image .589 .504 4 12 .511 .525 10

seg. .449 .373 4 11 .412 .412 5

letter .467 .187 9 30 .513 .226 40

wine .369 .633 2 2 .299 .417 5

wine

-3-8 .478 .627 8 2 .623 .722 4

Interestingly, the mixture of PPCA approach is not al-
ways better than PCA+EM. Mixtures of PPCA per-
formed better than PCA+EM in terms of NMI and
FM on most small datasets (toy, oil, and glass), which
are well modeled by mixtures of Gaussians. PPCA
with fewer clusters has a comparable performance with
EM + PCA on the large data sets (optical digits, satel-
lite image, segment), except for the letter data, where
PPCA performed better. Finally, mixtures of PPCA
are worse than PCA+EM on the chart and wine data.
Upon closer inspection on the chart data, we observe
that the first level of mixture of PPCA grouped the
data with cluster one isolating class two, and grouped
the rest into cluster two. ICL cannot split cluster two
into more sub-clusters because it is highly overlapping.

On the wine data, we noticed that if on the first level
mixture of PPCA projects the data to three dimen-
sions and eight dimensions on the second level, hier-
archical PPCA results in much better clusterings (as
shown on the last row of the Table 2). This indicates



that better results can be obtained if we have a better
method for determining the number of dimensions in
each level than just retaining 90% of the information.
We will investigate this further in future work.

A hierarchical mixture of PPCA provides a flexible
representation of the data. We obtain different dimen-
sions q for each level and different local projections for
each cluster. In fact, due to this allowed flexibility
(three on the first level and eight dimensions on the
second level) for the wine data, we are able to attain
better clustering results than PCA+EM (when q = 2
and q = 8 as shown on the last two rows of Table 2).

Level 1:

NMI=0.761

FM=0.763

Level 2:

NMI=0.966

FM=0.987

Figure 1. The hierarchy from the toy data set. The data
are generated from a mixture of three Gaussians. Two of
the clusters are closely spaced as shown in the top figure.
Our algorithm was able to split the data into three clusters.

We examine the clustering results for each level and
check whether ICL splits up clusters, which does not
look like uni-modal Gaussians. Figures 1 and 2 provide
a hierarchical visualization of the results for the toy
data set and the satellite image data. Due to space lim-
itations, we display the results for one synthetic data
and one real data. These are representative of the re-
sults for the other data sets. Note that the dimensions
for each cluster obtained by our automated approach
maybe more than two, and that each data point be-
longs to all clusters with some probability. To plot the
results in two-dimensions, we plot each data point us-
ing two leading posterior mean projection components.
To prevent confusion, we only plot each data point to
the cluster to which it has the largest posterior proba-
bility. To show the labeled classes in the scatterplots,
we display each class with a different symbol and color.

The toy data set is generated from a mixture of three
Gaussians. Two of the clusters are highly overlapped,

while the third is well separated from the first two. As
shown in Figure 1, our algorithm was able to find the
hierarchy and the number of clusters almost perfectly.
It discovered two clusters in level one. Then, based on
ICL, it splits one of the clusters into two sub-clusters
in level two.

The satellite data consists of four digital images of the
same scene in 36 different spectral bands. For visu-
alization purpose here, we applied our algorithm on
20% of random subsamples of the original 4435 data
points (Note that in Table 2, we ran our algorithm
on all the 4435 data points). Our algorithm gener-
ated four levels, we can only show the first three levels
(again due to space). Again, our approach discovered
reasonable clusters. Note that the evaluation criteria,
both NMI and FM, decreased from level two to level
three since our approach detected the multi-modality
of some labeled classes (Recall that a class can ac-
tually be multi-modal). Previous study on this image
data also indicated the multi-modality of some labeled
classes (Bishop & Tipping, 1998).

These figures demonstrate that our automated ap-
proach was able to find reasonable clusters and that
ICL broke multi-modal clusters appropriately.
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Figure 2. The hierarchy from the satellite image data

5. Conclusions

We have developed an automated hierarchical mixture
of principal component analyzers algorithm. To ini-
tialize, we apply twenty random restarts, to determine
the number of retained dimensions, we keep 90% of
the information, and to determine the number of clus-
ters, we utilize the integrated classification likelihood
criterion (ICL). Our experimental results show that



we were able to obtain reasonable clusters, and that
ICL was able to split multi-modal clusters if there is
enough separation between those clusters.

Without dimension reduction, EM of a mixture
of Gaussians on the original data fails on high-
dimensional data.

The additional flexibility offered by an automated hi-
erarchical mixture of PPCA, which allows the algo-
rithm to represent each cluster with a different dimen-
sion and a different local PCA projection, enabled it
to find better solutions than a global PCA followed
by EM. This was well demonstrated by the results on
wine data where hierarchical PPCA utilized three di-
mensions on the first level and eight dimensions on the
second level.

Hierarchical clustering provides a flexible representa-
tion showing relationships among clusters in various
perceptual levels. It results in a coarse to fine local
component model with varying projections and with
different number of dimensions for each cluster. The
automated hierarchical mixtures of PPCA presented
here can easily be extended to mixtures of factor ana-
lyzers.

Another direction for future work is to investigate how
the number of dimensions chosen affects the choice for
the number of clusters and vice versa.
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