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Abstract

Synchronous reinforcement learning (RL) al-
gorithms with linear function approximation
are representable as inhomogeneous matrix
iterations of a special form (Schoknecht &
Merke, 2003). In this paper we state con-
ditions of convergence for general inhomoge-
neous matrix iterations and prove that they
are both necessary and sufficient. This result
extends the work presented in (Schoknecht &
Merke, 2003), where only a sufficient condi-
tion of convergence was proved. As the con-
dition of convergence is necessary and suf-
ficient, the new result is suitable to prove
convergence and divergence of RL algorithms
with function approximation. We use the
theorem to deduce a new concise proof of con-
vergence for the synchronous residual gradi-
ent algorithm (Baird, 1995). Moreover, we
derive a counterexample for which the uni-
form RL algorithm (Merke & Schoknecht,
2002) diverges. This yields a negative answer
to the open question if the uniform RL algo-
rithm converges for arbitrary multiple tran-
sitions.

1. Introduction

Reinforcement Learning (RL) is concerned with learn-
ing optimal policies for the interaction of an agent with
its environment. This problem is formulated as a dy-
namic optimisation problem and modelled as a Markov
Decision Process (MDP). This MDP corresponds to
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the following learning situation. An agent interacts
with the environment by selecting an action a from
the available finite action set A and receiving feedback
about the resulting immediate reward r. As a conse-
quence of the action the environment makes a transi-
tion from a state s to a state s′. Accumulated over
time the obtained rewards yield an evaluation of every
state concerning its long-term desirability. The objec-
tive is to find an optimal policy that corresponds to
an optimal value function. One algorithm to compute
such an optimal policy is policy iteration (Bertsekas &
Tsitsiklis, 1996). This algorithm consists of two steps
that are executed in turn. The policy evaluation step
determines the value function for a fixed policy. From
this value function an improved policy is derived in
the policy improvement step. In this paper we only
consider policy evaluation.

As long as a tabular representation for the value func-
tion is used, RL algorithms like TD(λ) (Sutton, 1988)
or the residual gradient algorithm (Baird, 1995) are
known to converge to the optimal solution of the policy
evaluation task. For large problems, however, a tab-
ular representation of the value function is no longer
feasible with respect to time and memory considera-
tions. Therefore, linear feature-based function approx-
imation is often used. Such function approximation
makes the issue of convergence more complicated. On
the one hand algorithms like TD(λ) may not converge
at all (Baird, 1995). And on the other hand, even if
they converge, different algorithms may converge to
different solutions (Schoknecht, 2003).

For the TD(λ) algorithm with general linear function
approximation convergence with probability one can
be proved under the crucial condition that the states
are sampled according to the steady state distribution
of the underlying Markov chain (Tsitsiklis & Van Roy,



1997). This requirement may be disadvantageous for
policy improvement as shown in (Koller & Parr, 2000)
because it may lead to bad action choices in rarely
visited parts of the state space. Moreover, in practical
reinforcement learning it is desirable to take transi-
tion data from arbitrary sources, e.g. from on-line be-
haviour, archived data or from observing the system
while under the control of some other policy. In this
case a certain sampling distribution cannot be assured
which may prevent convergence. Therefore, we need
a convergence analysis for RL algorithms with linear
function approximation when the transition data is ar-
bitrary.

In (Schoknecht & Merke, 2003) a unified framework
for synchronous RL algorithms with linear function
approximation was considered. It was shown that
the update rules of synchronous RL algorithms can
be written as inhomogeneous iterations with a special
common structure. Moreover, sufficient conditions of
convergence for this class of iterations were derived.
Our main theorem in this paper extends this result in
two important ways. First, we consider a more general
iteration that contains the above iterations as a special
case. And second, we give a necessary and sufficient
condition for the convergence of this general iteration.
We apply our new theorem to prove the convergence
of the synchronous residual gradient algorithm for a
fixed set of arbitrary multiple transitions.

In (Merke & Schoknecht, 2002) the uniform RL al-
gorithm in combination with interpolating grid based
function approximators was introduced. In contrast
to the synchronous TD(0) algorithm the uniform RL
algorithm converges for arbitrary single transitions.
However, it was an open question if the uniform RL
algorithm also converges for arbitrary multiple tran-
sitions. Using the new theorem we construct a coun-
terexample with two transitions that violates the nec-
essary condition of convergence. This shows that the
uniform RL algorithm diverges in the general case.

2. Convergence Results

We consider the general inhomogeneous matrix itera-
tion of the form

x(k + 1) = Ax(k) + b (1)

were A ∈ Kn×n, x(k), b ∈ Kn and K ∈ {R,C} denotes
the field of real or complex numbers respectively. The
iteration (1) can equivalently be written as

x(k + 1) = φA,b(x(k)) (2)

with the affine mapping φA,b(x) := Ax + b. The k-
th element in the sequence is then given by x(k) =

φkA,b(x(0)). There are four possible behaviours for the
equivalent iterations (1) and (2)

Convergence

Conv(A, b) :⇐⇒ ∀x ∈ Kn : lim
k→∞

φkA,b(x) = a <∞

Conditional convergence (the limit depends on the
start value x)

CondConv(A, b) :⇐⇒ ∀x ∈ Kn : lim
k→∞

φkA,b(x) = a(x) <∞

Boundedness (also known as Lagrange stability)

Bounded(A, b) :⇐⇒ ∀x ∈ Kn : lim sup
k→∞

‖φkA,b(x)‖ <∞

Divergence

Diverge(A, b) :⇐⇒ ∃x ∈ Kn : lim sup
k→∞

‖φkA,b(x)‖ =∞.

Obviously, the following relations between
the different properties of the iterations hold:
Conv(A, b) ⇒ CondConv(A, b) ⇒ Bounded(A, b) and
Bounded(A, b) ⇔ ¬Diverge(A, b). The objective
is to state necessary and sufficient conditions for
the above properties that depend on A and b. For
property Conv(A, b) there exist standard numerical
results which provide such necessary and sufficient
conditions (Greenbaum, 1997). For the special case
b = 0 conditions for the properties CondConv(A, 0)
and Bounded(A, 0) are given in (Ludyk, 1985) (see
proposition 1 below). However, there exist no nec-
essary and sufficient conditions for the properties
CondConv(A, b) and Bounded(A, b) with an arbitrary
translation vector b. In this paper we state such
conditions and prove that they are both necessary
and sufficient. This result is especially important
for approximate reinforcement learning (RL) where
questions about convergence or boundedness of
RL algorithms in conjunction with linear function
approximators naturally arise (Bertsekas & Tsitsiklis,
1996; Schoknecht & Merke, 2003).

Our analysis will rely on spectral properties of the
matrix A. In the following σ(A) denotes the spec-
trum of A, i.e. the set of its eigenvalues. The eigen-
value with maximal absolute value defines the spec-
tral radius ρ(A) := max{|λ| | λ ∈ σ(A)} of A. The
eigenspace of A corresponding to the eigenvalue λ is
denoted by EAλ = {x | Ax = λx}, and the generalised
eigenspace by HA

λ = {x | ∃k : (λI − A)kx = 0}. From
the definitions it follows that EAλ ⊂ H

A
λ , but in general

EAλ 6= H
A
λ . The case E

A
λ = HA

λ means that if a vector is
annihilated by (λI−A)k for some k, then it is already
annihilated for k = 1 (cf. (Gohberg et al., 1986)).



In the following we define two properties of a matrix A
with eigenvalues λ ∈ σ(A) that will be useful to state
our results:

Cond1(A) :⇐⇒ |λ| = 1 implies λ = 1

CondE(A) :⇐⇒ |λ| = 1 implies EAλ = HA
λ

The first condition ensures that 1 is the only eigen-
value with modulus one. The second condition ensures
that eigenspaces of eigenvalues with modulus one are
identical to the corresponding generalised eigenspaces.
The following proposition reviews the results for a ho-
mogeneous iteration

Proposition 1 For the homogeneous iteration

x(k + 1) = Ax(k)

with A ∈ Kn×n and x(k) ∈ Kn the following holds

Conv(A, 0)⇐⇒ ρ(A) < 1

CondConv(A, 0)⇐⇒ ρ(A) ≤ 1 ∧ CondE(A) ∧ Cond1(A)

Bounded(A, 0)⇐⇒ ρ(A) ≤ 1 ∧ CondE(A).

Proof: The proof uses the Jordan canonical form of
the matrix A and can be adapted from (Ludyk, 1985;
Elaydi, 1999). ♦

Thus, in order to obtain conditional convergence from
boundedness the only eigenvalue of the iteration ma-
trix with modulus one may be λ = 1. In the follow-
ing we present our main theorem. It completely clar-
ifies the behaviour of the inhomogeneous iteration (1)
and states the most general conditions for its conver-
gence or boundedness. The idea behind the proof is
to reduce the inhomogeneous case (1) via homogenisa-
tion to the homogeneous iteration x̃(k + 1) = Ãx̃(k).
Then, we will use proposition 1 to obtain conditions
for the different behaviours of the iteration. How-
ever, CondE(A) ⇔ CondE(Ã) generally does not hold.
Therefore, we will need an additional condition b ∈
Im{I − A}, where Im{A} = {Ax | x ∈ Kn} denotes
the range of the linear mapping A.

Theorem 1 Consider the inhomogeneous matrix iter-
ation (1). Then the following equivalences hold

Conv(A, b)⇐⇒ ρ(A) < 1 (3)

Case 1: 1 /∈ σ(A)

CondConv(A, b)⇐⇒ ρ(A) ≤ 1 ∧ (4)

CondE(A) ∧ Cond1(A)

Bounded(A, b)⇐⇒ ρ(A) ≤ 1 ∧ (5)

CondE(A)

Case 2: 1 ∈ σ(A)

CondConv(A, b)⇐⇒ ρ(A) ≤ 1 ∧ (6)

CondE(A) ∧ Cond1(A) ∧

b ∈ Im{I −A}

Bounded(A, b)⇐⇒ ρ(A) ≤ 1 ∧ (7)

CondE(A) ∧ b ∈ Im{I −A}.

Proof: Equivalence (3) is a standard numerical result
(see (Greenbaum, 1997)), and was included for com-
pleteness. The iteration (1) can also be written in the
homogeneous form

x̃(k + 1) = Ãx̃(k) (8)

where Ã ∈ K(n+1)×(n+1) and x̃(k) ∈ Kn+1:

Ã =









A b

0 . . . 0 1









, x̃ =









x

1









Let p(λ) and p̃(λ) be the the characteristic polynomials
of A and Ã respectively. Then, p̃(λ) = p(λ)(1 − λ)
holds and we obtain

σ(Ã) = σ(A) ∪ {1}. (9)

Moreover, due to the block structure of Ã the vector
(x1, . . . , xn)

> is a (generalised) eigenvector of A corre-
sponding to eigenvalue λ if and only if (x1, . . . , xn, 0)

>

is a (generalised) eigenvector of Ã corresponding to the
same eigenvalue λ. Thus,

EAλ = HA
λ ⇐⇒ EÃλ = HÃ

λ , for λ 6= 1. (10)

As iteration (8) is just the equivalent homogenised
form of iteration (1) the relations CondConv(A, b) ⇔
CondConv(Ã, 0) and Bounded(A, b) ⇔ Bounded(Ã, 0)
hold.

Let us first consider the case 1 /∈ σ(A). Together
with (9) λ = 1 is a simple eigenvalue of Ã. There-
fore, the corresponding eigenspace must at least be
one-dimensional. On the other hand, the generalised
eigenspace can be at most one-dimensional. Thus

EÃ1 = HÃ
1 . Together with (10) we obtain CondE(A) ⇔

CondE(Ã). From (9) we directly obtain ρ(A) ≤ 1 ⇔
ρ(Ã) ≤ 1. Thus, we have ρ(A) ≤ 1 ∧ CondE(A) ⇐⇒
ρ(Ã) ≤ 1 ∧ CondE(Ã). Proposition 1 states that
this equivalent to Bounded(Ã, 0) which is equivalent to
Bounded(A, b). This yields (5). Due to (9) it holds
that Cond1(A) ⇔ Cond1(Ã). Together with (5) this
gives (4).



We now consider the more interesting case 1 ∈ σ(A).
Assume that CondE(Ã) holds. With (9) we directly ob-
tain EA1 = HA

1 . And with (10) this yields CondE(A).
Moreover, the new eigenvalue 1 of Ã yields a new
eigenvector x̃ = (x, xn+1)

> with xn+1 6= 0. Without
loss of generality assume that xn+1 = 1. It holds that

Ãx̃ = x̃⇐⇒ Ax+ b = x

⇐⇒ b = (I −A)x

⇐⇒ b ∈ Im{I −A}.

(11)

Therefore, CondE(Ã) ⇒ CondE(A) ∧ b ∈ Im{I − A}.
On the other hand let CondE(A) ∧ b ∈ Im{I − A} be
valid. According to (11) the latter condition implies
that Ã has an eigenvector of the form x̃ = (x, xn+1)

>

with xn+1 6= 0. Thus, dim E Ã1 = dim EA1 + 1. From
CondE(A) it follows that EA1 = HA

1 . And due to

EÃ1 ⊂ H
Ã
1 it follows that E Ã1 = HÃ

1 . Together with (10)
this yields CondE(Ã) ⇐ CondE(A) ∧ b ∈ Im{I − A}.
Hence we have shown the equivalence CondE(Ã) ⇔
CondE(A) ∧ b ∈ Im{I − A}. Together with proposi-
tion 1 this yields (7). With the same argument as
above equivalence (6) follows from identity (9) and (7).

♦

To get a better intuition for the conditions in theo-
rem 1 we consider a simple example. The translation
x(k + 1) = Ix(k) + b for b 6= 0 clearly diverges be-
cause of x(k) = kb. This can also be seen by observing
that σ(I) = {1} and b /∈ Im{I − I} = {0} which is a
violation of equivalence (7) in theorem 1.

3. Application to Reinforcement

Learning

The framework for synchronous RL algorithms in the
policy evaluation case was set up in (Schoknecht &
Merke, 2003). For a Markov decision process (MDP)
with n states S = {s1, . . . , sn}, action space A, state
transition probabilities p(si|a,sj) and reward function
r : (S,A) → R policy evaluation is concerned with
solving the Bellman equation

V π = γP πV π +Rπ (12)

for a fixed policy π : S → A. V π
i denotes the value

of state si, P
π
i,j = p(si|sj , π(si)) and γ ∈ [0, 1) is the

discount factor.

In practice due to the large number of states, the
value function (vector) V is approximated by a lin-
ear combination of basis functions {Φ1, . . .ΦF } which
can be written in matrix form as V = Φw with
Φ = [Φ1| . . . |ΦF ] ∈ Rn×F . We can also write Φ> =

[ϕ(s1)| . . . |ϕ(sn)], where ϕ(si) ∈ RF contains the fea-
ture vector of state si (see also (Bertsekas & Tsitsiklis,
1996)).

In (Schoknecht & Merke, 2003) it was shown that for
one transition x → z with reward ρ the TD(0) algo-
rithm for the solution of (12) can be written as

w(k + 1) = (I + αcd>)w(k) + αcρ (13)

with c = ϕ(x) and d = γϕ(z)− ϕ(x).

This can be generalised for a set T = {(xi, zi, ρi) | i =
1, . . . ,m} of m transitions

w(k + 1) = (I + αCD>)w(k) + αCr, (14)

where in the case of the synchronous TD(0) algorithm
r = (ρ1, . . . , ρm)>, C = [ϕ(x1)| . . . |ϕ(xm)] and D =
[γϕ(z1)− ϕ(x1)| . . . |γϕ(zm)− ϕ(xm)].

3.1. Residual Gradient Algorithm

As shown in (Baird, 1995) the synchronous TD(0)
algorithm can diverge. And therefore, the residual
gradient (RG) algorithm was proposed as a conver-
gent alternative. According to (Schoknecht & Merke,
2003) this algorithm can be represented with appro-
priately chosen matrices C and D, where C = −D.
The sufficient condition of convergence in (Schoknecht
& Merke, 2003) was tailored to iterations of the form
(14). As (14) is a special case of the more general iter-
ation (1) the new theorem 1 can also be used to obtain
a concise convergence proof for the RG algorithm.

Corollary 1 For an arbitrary matrix C ∈ Kn×m and
w(k) ∈ Rn, r ∈ Rm there exist a range of positive α’s
such that the iteration

w(k + 1) = (I − αCC>)w(k) + Cr (15)

converges for every initial value w(0) (the limit de-
pends on w(0) if CC> is singular).

Proof: We write Aα := I − αCC>. The matrix CC>

is positive semidefinite having real and nonnegative
eigenvalues. If CC> is nonsingular then there obvi-
ously exists a positive α such that ρ(Aα) < 1 and we
are done. In the singular case again because of the
nonnegativeness of the eigenvalues we can choose an
α such that the conditions ρ(Aα) ≤ 1 and Cond1(Aα)
hold. As Aα is symmetric and therefore diagonalisable,
it follows that EAλ = HA

λ , which establishes property
CondE(Aα). It remains to show that Cr ∈ Im{I−Aα}
or equivalently that Cr = CC>x for some x ∈ Rn. Us-
ing the pseudo inverse (C>)† = C of C> (cf. (Björck,
1996)) yields CC>(C>)† = C. Therefore, x = (C>)†r
fulfils the above requirement. ♦



Figure 1. Support of a hat function on a two-dimensional

grid with Kuhn triangulation.

3.2. Uniform RL Algorithm

In (Schoknecht & Merke, 2003) it was shown that a
whole class of synchronous RL algorithms is gener-
ated by replacing C in (14) with some other matrix
which depends on the xi and zi. This class contains
the Kaczmarcz, RG, nearest neighbour and the uni-
form RL algorithm. In (Merke & Schoknecht, 2002) it
was shown that only the RG algorithm and the uni-
form RL algorithm converge for single transitions.

It has been an open question if the uniform RL al-
gorithm would also converge in the case of multiple
synchronous transitions. In this section we will use
theorem 1 to generate counterexamples which violate
a necessary condition of convergence. This shows that
the uniform RL algorithm generally diverges for more
than one transition.

The uniform RL algorithm is applicable for linear grid
based function approximators. This kind of function
approximator assumes a d-dimensional grid and a tri-
angulation into simplices given. In figure 1 we see an
example of a two-dimensional grid with a Kuhn tri-
angulation. The representable functions are linear on
the simplices and continuous on the simplex bound-
aries. They can be described as a linear combination
of generalised hat functions.

In the example in figure 1 the support of a two-
dimensional hat function is shaded. The black dot
is the top of the hat function, where it attains the
value 1. At the boundaries of the support the hat
function vanishes, and on each simplex it is linear.
These conditions uniquely define the hat function cen-
tred on the black dot. The set of all hat functions
{ϕ1, . . . , ϕF } corresponding to the F grid nodes is

0 1
x z

z x
1

2 2

1

Figure 2. Two transitions xi → zi on a one-dimensional

simplex

a basis of the space of representable functions, i.e.
f(x) =

∑F
i=1 ϕi(x)wi. The feature ϕi(x), which is

equivalent to the value of the i-th hat function at point
x, determines the weight that is given to grid node
i. The vector ϕ(x) = (ϕ1(x), . . . , ϕF )

> contains the
barycentric coordinates of x. It satisfies 0 ≤ ϕi(x) ≤ 1

and
∑F

i=1 ϕi(x) = 1.

If we now consider iteration (13) then we see that the
magnitude of the change of the components i of w(k)
depends on the feature ϕi(x). If x is near the centre of
the i-th hat function, then the change will be greater
than if x is near the boundary of the support of the
hat function. For x outside the support of the i-th hat
function ϕi(x) will be zero, which reflects the local
character of grid approximators. The idea behind the
uniform update rule is to replace c = ϕ(x) in (13) by
a vector which equally weights all hat functions which
have x in its support. Formally we define

ψi(x) =

{

1
p

if ϕi(x) 6= 0,

0 else
(16)

where p is the number of nonzero entries in ϕ(x). Be-
cause of ϕi(x) 6= 0 for at least one i this is well defined.

For a single transition (x, z, ρ) we now obtain the uni-
form RL algorithm

w(k + 1) = (I + αψ(x)(γϕ(z)− ϕ(x))>)w(k)

+ αψ(x)ρ
(17)

by replacing c = ϕ(x) in (13) with c = ψ(x). It was
shown in (Merke & Schoknecht, 2002) that the iter-
ation (17) converges for suitable choices of α. As we
will show in the following, this is no longer true in
the case of multiple transition updates. Our search for
a divergent counterexample with two transitions will
be guided by theorem 1. The objective is to find two
transitions such that a necessary condition of conver-
gence is violated. In this case the iteration diverges.
For the sake of simplicity we consider the case of a
one-dimensional simplex with two transitions as de-
picted in figure 2 The grid consists of just one simplex,



namely the interval [0, 1]. For each x ∈ [0, 1] the fea-
ture vector contains the barycentric coordinates of x
with respect the boundary points 0 and 1, and there-
fore ϕ(x) = (1− x, x)>.

The iteration (17) generalises in the same way to the
case of arbitrary multiple transitions as iteration (14)
was derived from (13). Thus, a two transitions iter-
ations for the uniform RL algorithm can be written
as

w(k + 1) = (I + αCD>)w(k) + αCr (18)

with
C = [ψ(x1)|ψ(x2)], r = (ρ1, ρ2)

and

D> = [γϕ(z1)− ϕ(x1) | γϕ(z2)− ϕ(x2)]
>

=

(

γ(1− z1)− (1− x1) γz1 − x1

γ(1− z2)− (1− x2) γz2 − x2

)

According to iteration (18) the matrix A and the vec-
tor b in theorem 1 are given by A = I + αCD> and
b = Cr. Let us assume that x1, x2, z1, z2 ∈ [0, 1]
as depicted in figure 2. In the following we con-
struct a counterexample that violates the necessary
condition of convergence b ∈ Im{I − A}. We set
x1 = z1 = 0, x2 = γz2 and z2 ∈ (0, 1). Then we have
ϕ(x1) = (1, 0)>. According to (16) ψ(x1) = (1, 0)>

because only one entry of ϕ(x1) is nonzero. With
ψ(x2) = ( 1

2 ,
1
2 )
> this yields

C =

(

1 1
2

0 1
2

)

, D> =

(

γ − 1 0
γ − 1 0

)

and

CD> =
1

2
(γ − 1)

(

3 0
1 0

)

Thus, Im{I − A} = Im{CD>} = [(3, 1)>], where
[v] denotes the linear subspace spanned by the vec-
tor v. We must now choose r = (ρ1, ρ2) such that
b = Cr = (ρ1 +

1
2ρ2,

1
2ρ2)

> /∈ [(3, 1)>]. This is equiva-
lent to ρ1 +

1
2ρ2 6=

3
2ρ2 which is equivalent to ρ1 6= ρ2.

Thus for an arbitrary choice of ρ1 and ρ2 with ρ1 6= ρ2

condition b ∈ Im{I − A} is violated and the iteration
(18) diverges for all initial values w(0).

4. Conclusions

We have proved necessary and sufficient conditions of
convergence for a general matrix iteration. The update
rules in a unified framework for synchronous reinforce-
ment learning (RL) algorithms with linear function ap-
proximation can be seen as a special case of this itera-
tion. Therefore, our results can be used to prove either
convergence or divergence of the different algorithms

in this framework. We have applied the new theo-
rem to prove convergence of the synchronous residual
gradient algorithm (Baird, 1995). Moreover, we have
addressed the unresolved problem if the uniform RL
algorithm (Merke & Schoknecht, 2002) converges for
multiple arbitrary transitions. Our theorem allows to
construct a counterexample for which this algorithm
diverges. Therefore, the residual gradient algorithm
remains the only RL algorithm for which convergence
has been shown in the case of multiple transitions and
linear function approximation.
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