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Abstract

The effort necessary to construct labeled sets
of examples in a supervised learning scenario
is often disregarded, though in many appli-
cations, it is a time-consuming and expensive
procedure. While this already constitutes a
major issue in classification learning, it be-
comes an even more serious problem when
dealing with the more complex target domain
of total orders over a set of alternatives. Con-
sidering both the pairwise decomposition and
the constraint classification technique to rep-
resent label ranking functions, we introduce
a novel generalization of pool-based active
learning to address this problem.

1. Introduction

The increasing shift from predetermined and static
to personalized and highly adaptive systems has af-
fected various areas of application. Techniques to in-
dividualize application flows and to incorporate user
preferences have produced more efficient systems in
the domains of e-commerce (Riecken, 2000), informa-
tion retrieval and design of user interfaces (Langley,
1997), among others. A fundamental prerequisite of
systems which consider individuals rather than prede-
fined standard users is the ability to efficiently acquire
accurate preference models.

We consider a special category of preference learning
problems, so-called (label) ranking problems. The fun-
damental objective is to learn a mapping from a given
input space to the set of total orders over a finite and
a priori fixed set of alternatives (labels). For exam-
ple, suppose we are given a set of customers which are
represented by features (such as age, income, family
status, etc.) and their ordered preferences over a set of
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car models {Porsche, Toyota, Ford, Lada}. Then, the
learning task consists in inducing a mapping from cus-
tomers to the set of permutations of these car models.
We can employ the induced ranking function to predict
the order of preference for new customers. In contrast
to a classification setting, we are not only interested in
the top-ranked alternative but in the complete prefer-
ence order. By incorporating this additional informa-
tion, we can build more powerful prediction systems
which, for instance, are able to make preference sug-
gestions in situations where the top-ranked alternative
is currently not available for some reason.

As in the case of multiclass classification, there ex-
ist different approaches to reduce ranking problems to
binary classification problems. As a straightforward
generalization of one-against-one (multiclass) classifi-
cation, ranking problems can be decomposed into bi-
nary classification problems considering all pairwise
preferences between two alternatives (Fürnkranz &
Hüllermeier, 2003). Each pairwise preference prob-
lem is treated independently as a binary classification
problem and predictions are made by means of a vot-
ing procedure. An alternative approach to the expres-
sion of a ranking problem in terms of a single binary
classification problem has been proposed by Har-Peled
et al. (2002). Transforming the initial ranking prob-
lem both involves embedding the training data in a
higher dimensional space and expanding single ranking
examples into multiple binary classification examples.

Both approaches consider the problem of learning a
ranking function in a supervised batch learning sce-
nario. Hence, it is assumed that we are given a train-
ing set of examples associated with the corresponding
permutations. However, there are many applications
in which assigning permutations to examples (herein
after referred to as labeling in compliance with stan-
dard notation) cannot be performed automatically but
involves human decisions or costly interviews. There-
fore, it is a time-consuming and expensive task. While
this already constitutes a major issue in classification
learning, it becomes an even more serious problem



when dealing with the more complex target domain of
the set of permutations: To ask for a customer’s top
preference is less expensive than to request a complete
preference order over all possible alternatives.

The superordinate concept of active learning refers to
a collection of approaches that aim at reducing this
labeling effort (see section 5 for a more detailed dis-
cussion). We consider the pool-based active learning
model 1 (Lewis & Gale, 1994): Starting with only a
small amount of labeled examples, the learning algo-
rithm sequentially selects new examples from a finite
set of unlabeled examples and requests the correspond-
ing permutations. The crucial point is that by select-
ing only the most informative examples to be labeled,
in many applications it is possible to learn a model by
using fewer labeled examples without a significant loss
of generalization accuracy in comparison to conven-
tional batch learning based on the entire set of labeled
examples.

In the field of kernel machines, active learning has been
successfully applied to classification problems to re-
duce the labeling effort (Tong & Koller, 2000; Camp-
bell et al., 2000; Warmuth et al., 2002). All these
approaches are restricted to either binary or multi-
class classification problems and do not extend to rank-
ing problems. We propose a novel extension of active
learning to ranking problems. Considering both pair-
wise decomposition (Fürnkranz & Hüllermeier, 2003)
and the constraint classification technique (Har-Peled
et al., 2002), we propose heuristic strategies to the se-
lection of new training examples. Experimental results
indicate a significant reduction of the labeling effort.

This paper is organized as follows: The subsequent
section discusses the above stated techniques to ex-
press and train ranking functions. In section 3, we
investigate active learning in the case of ranking prob-
lems and introduce our novel generalization. Section 4
discusses experimental results conducted on a number
of synthetic datasets and demonstrates the benefits of
our approach. In section 5, we point out references to
related research and finally give a conclusion.

2. Ranking Problems

This section recapitulates two techniques to solve
ranking problems. Formally, the learning problem that
we are investigating can be stated as follows: Based on
a given training set of labeled examples

T = {(x1, y1), . . . , (xm, ym)} ⊂ (X × S(d))m

1If not noted otherwise, we refer to the pool-based active
learning model as active learning herein after.

with X denoting a nonempty set and S(d) being the
symmetric group of degree d, i.e.

yi = ([yi]1, . . . , [yi]d)

with {[yi]1, . . . , [yi]d} = {1, . . . , d}, we seek to induce
a function

f : X → S(d)

to the prediction of new examples. In other words,
the objects to be learned are total orders over a finite
and a priori fixed set of alternatives which are rep-
resented as permutations. A permutation y is inter-
preted as follows: If alternative i precedes alternative
j in y, then i is preferred over j. This representation
is based on the reasonable assumption that the order
over the set of labels is irreflexive and anti-symmetric
(for a more detailed discussion see (Fürnkranz &
Hüllermeier, 2003)).

Both to increase expressivity and to make use of (typi-
cally) highly accurate base classifiers, we embed exam-
ples from input space X using a kernel k : X ×X → R.
The corresponding kernel feature space is denoted by
F and the feature map by φ : X → F (Schölkopf &
Smola, 2002).

2.1. Constraint Classification

The constraint classification approach (Har-Peled
et al., 2002) provides a framework to solve a variety of
more complex learning problems, such as ranking and
multilabel problems, based on (binary) linear classi-
fiers. We restrict our discussion to ranking problems in
the linear case, i.e. X = Rn endowed with the canon-
ical dot product 〈·, ·〉 to avoid a lengthy and rather
technical presentation. Later on we will comment on
how to integrate the concept of kernels.

Let us consider the class of linear sorting functions:

f : Rn → S(d)

x 7→ argsort
i=1,...,d

〈wi, x〉

with w1, . . . , wd ∈ Rn denoting weight vectors of lin-
ear functions and argsort returning a permutation of
{1, . . . , d} where i precedes j if 〈wi, x〉 > 〈wj , x〉 (in
the case of equality, i precedes j if i < j).

Transforming the initial ranking problem both involves
embedding the training data in a higher dimensional
space and expanding single ranking examples into mul-
tiple binary classification examples: Let v(x, i) de-
note an embedding of x in Rnd such that the fea-
tures of x = ([x]1, . . . , [x]n) are copied into the features



(i − 1)n + 1, . . . , i n of the augmented vector and the
remaining features are set to 0.

We expand (x, y) into a set T+(x, y) of d− 1 positive
binary classification examples in Rnd × {−1,+1}

T+(x, y) =
⋃

i=1,...,d−1

{(
v(x, [y]i)− v(x, [y]i+1),+1

)}
and a set of d− 1 negative examples

T−(x, y) =
⋃

i=1,...,d−1

{(
v(x, [y]i+1)− v(x, [y]i),−1

)}
.

The transformed training set T ′ is defined as the union
of all expanded examples:

T ′ =
⋃

i=1,...,m

T+(xi, yi) ∪ T−(xi, yi).

Suppose we apply an arbitrary learning algorithm to
the training set T ′ that calculates a separating hy-
perplane h(x) = 〈w, x〉 with w ∈ Rnd. Further-
more, we consider w as the concatenation of d n-
dimensional vectors w1, . . . , wd and by this means de-
fine a linear sorting function f : Rn → S(d). Since
h is a separating hyperplane, it follows that for all
(t,+1) =

(
v(x, [y]i)− v(x, [y]i+1),+1

)
∈ T ′,

h(t) = 〈w, t〉 = 〈w[y]i , x〉 − 〈w[y]i+1 , x〉 > 0.

Hence, the linear sorting function f correctly arranges
the alternatives [y]i and [y]i+1. Since all constraints on
consecutive alternatives are encoded as (positive) bi-
nary examples, f is consistent with the original rank-
ing training set. In fact, to ensure consistency in this
case, we do not need the expansion into negative exam-
ples. While the expansion into both positive and nega-
tive examples makes this framework applicable regard-
less of the underlying training algorithm, we can ex-
ploit the fact that the training set is symmetric around
the origin. In the case of support vector machines,
the one-class algorithm proposed by Schölkopf et al.
(2001) can be modified in a straightforward fashion
to work on the positive set only. However, we do not
make use of this modification because our reasoning
is based on a C−parametrization whereas (Schölkopf
et al., 2001) use a ν−parametrization.

Apart from theoretical analysis, one should not im-
plement the constraint classification framework by ex-
plicitly expanding examples. It is more efficient to
store constraints imposed by consecutive alternatives
and references to original examples in expanded ex-
amples and make use of a suitable (meta-)kernel. Fur-
thermore, the standard kernelization technique can be
incorporated at this place.

2.2. Pairwise Ranking

Pairwise ranking (Fürnkranz & Hüllermeier, 2003) is
a generalization of one-against-one (multiclass) clas-
sification which learns a separate binary classifier for
each of the d(d − 1)/2 pairs of alternatives. Each bi-
nary classifier hij (with 1 ≤ i < j ≤ d) decides for a
given example whether alternative i or j is preferred.
The training set for hij consists of the complete set of
feature vectors x1, . . . , xm with the class label y of each
example (x, y) being assigned depending on whether i
precedes j in y or vice versa.

To predict a new ranking, we determine the classifi-
cations of all binary classifiers hij(x) ∈ {−1,+1} and
interpret the outcome as a vote for alternative i or j.
Finally, all possible alternatives are sorted in descend-
ing order with respect to the sum of votes. In the case
of ties, though it might be suboptimal, we prioritize al-
ternatives with smaller indices. Formally, this strategy
can be stated as follows:

x 7→ argsort
i=1,...,d

d∑
j=i+1

max(hij(x), 0)+
i−1∑
j=1

max(−hji(x), 0).

Pairwise ranking provides a framework that is applica-
ble without any further assumptions on the underly-
ing binary classifier. We consider support vector ma-
chines as base classifiers. Whenever there is a close
decision between two alternatives, i.e. the given ex-
ample is close to the classification boundary, it is not
necessarily a clever strategy to assign a complete vote
to one of them. Therefore, in addition to the above
stated standard voting strategy, we investigate a mod-
ified strategy: Using an approach proposed by Platt
(1999), we estimate posterior (positive) class proba-
bilities h′ij(x) ∈ [0, 1] instead of class labels and assign
partial votes to both alternatives:

x 7→ argsort
i=1,...,d

d∑
j=i+1

h′ij(x) +
i−1∑
j=1

(1− h′ji(x)).

We refer to this method as probabilistic voting.

3. Active Learning

This section introduces novel heuristic active learning
criteria for both the constraint classification and the
pairwise decomposition technique.

We derive a selection criterion for the constraint clas-
sification method based on the version space model
for binary classification problems: Let us consider a
linearly separable (in feature space) binary classifica-
tion problem. Note that we can deal with noisy, lin-
early nonseparable data in an elegant way by adding



some constant ν > 0 to the diagonal elements of the
kernel matrix, k(xi, xj) + δijν, such that the training
set becomes linearly separable when using the L2-loss
(Shawe-Taylor & Cristianini, 1999).

The nonempty set

V def= {w ∈ F | sign(〈w, φ(xi)〉) = yi

for i = 1, . . . ,m and ‖w‖ = 1}

which consists of all (normalized) weight vectors cor-
responding to linear classifiers in feature space which
separate the training set without errors is called ver-
sion space (Mitchell, 1982). We can view learning as
a search problem within version space: Each train-
ing example (xi, yi) limits the volume of the version
space because to correspond to a consistent classifier
a weight vector has to satisfy

sign(〈w, φ(xi)〉) = yi ⇔ yi 〈w, φ(xi)〉 > 0.

In other words, consistent solutions are restricted to a
halfspace whose boundary is the hyperplane with nor-
mal vector yiφ(xi). For a fixed feature vector φ(xi),
the class label yi determines the orientation of the half-
space. Moreover, V is the intersection of m halfspaces
(a convex polyhedral cone) with the unit sphere in fea-
ture space F .

A classical result from the theory of convex sets states
that any halfspace containing the center of mass of a
convex set comprises at least 1/e of the overall vol-
ume (Grünbaum, 1960). Assume we are able to re-
peatedly select unlabeled examples which correspond
to restricting hyperplanes passing exactly through the
current center of mass of version space wcenter. Then,
independent of the actual class label, the volume of
version space is reduced exponentially in terms of the
number of labeled examples.2

To derive a practical selection criterion, we have to
make a number of approximations: It is computation-
ally expensive to calculate the center of mass in high
dimensional spaces. Therefore, the center of mass is
approximated by the center of the largest radius ball
w̃center in version space. When working on a normal-
ized set of examples, this approximation corresponds
to a support vector machine. Moreover, since we are
only given a finite set of unlabeled examples to choose
from, mostly we will not be able to find an example
which exactly meets the above stated criterion. Hence,
we select that unlabeled example whose restricting hy-
perplane is closest to the approximation of the cen-
ter of mass, i.e. examples minimizing |〈w̃center, φ(x)〉|.

2More precisely, for this argument to hold, we have to
consider an augmented (convex) version space as the inter-
section with the unit ball.

Assume that the requested example is labeled such
that the larger part of the current version space re-
mains. The ratio of volume reduction still approaches
at least 1 − 1/e the closer the restricting hyperplane
to the center of mass. For a convex set in isotropic
position, any halfspace at distance t from the center
of mass contains at least 1

e − t of its volume (Bertsi-
mas & Vempala, 2002). Based on analogous reasoning,
the margin y〈w̃center, φ(x)〉 of a labeled example (x, y)
can be considered as an approximate measure of the
reduction of volume where lower values correspond to
a higher reduction and negative values correspond to
the case where the smaller part of the version space re-
mains. Considering a best worst-case approach, we ob-
tain minimization of maxy∈{−1,+1} y〈w̃center, φ(x)〉 as
selection criterion which is a reformulation of the for-
mer criterion in the binary case. Apart from the ver-
sion space model which has been considered in (Tong
& Koller, 2000), there are additional theoretical justi-
fications for this approach (Campbell et al., 2000).

Coming back to the constraint classification frame-
work, the notion of the margin can be generalized in a
straightforward fashion as the minimum margin within
the set of expanded binary examples (Har-Peled et al.,
2002):
Definition (Generalized Margin). The margin
δ : X × S(d) → R of a ranking example (x, y) with re-
spect to the linear sorting function f is defined as

δ(x, y) = min
i=1,...,d−1

〈
w[y]i , φ(x)

〉
−

〈
w[y]i+1 , φ(x)

〉
.

If a support vector machine is used as the component
learner on the expanded binary training set to solve the
corresponding ranking problem, it maximizes this gen-
eralized margin. Moreover, this definition reduces to
the standard margin for ranking problems with d = 2
(which can be considered as binary classification prob-
lems).

It is straightforward to derive an upper bound on the
margin of a ranking example (x, y):

δ(x, y) ≤ max
y′∈S(d)

min
i=1,...,d−1

〈
w[y′]i , φ(x)

〉
−

〈
w[y′]i+1 , φ(x)

〉
(1)

= min
i,j=1,...,d

i6=j

| 〈wi, φ(x)〉 − 〈wj , φ(x)〉 |

def= δ+(x).

Note that this bound is tight in the sense that for every
x there exists a y such that equality holds in (1): If and
only if y = argsorti=1,...,d 〈wi, x〉, then δ(x, y) = δ+(x).
Therefore, given an unlabeled example x, δ+(x) evalu-
ates to the worst-case margin for all choices of y ∈ S(d).



Now, in a straightforward fashion, we can general-
ize selection of new training examples based on min-
imum worst-case margin from classification learning
to the problem of learning ranking functions: For all
unlabeled examples, we evaluate δ+(x) and request
the correct ranking corresponding to that example
with minimum worst-case margin. From a different
point of view, we select examples yielding (approxi-
mately) maximum worst-case volume reduction of ver-
sion space.

The pairwise ranking technique conducts an expan-
sion into binary classification problems considering all
pairs of alternatives. Hence, we are given a set of in-
dependently treated binary problems which is not di-
rectly amenable to analysis in the binary version space
model. In order to derive a heuristic selection crite-
rion, we consider a best worst-case approach with re-
spect to the minimum binary margin on the set of bi-
nary examples corresponding to a given ranking exam-
ple. In contrast to the constraint classification frame-
work, margins have to be evaluated based on different
binary classifiers. More precisely, for a labeled ranking
example, we have to consider the real-valued output of
d(d − 1)/2 binary classifiers hij (with 1 ≤ i < j ≤ d)
to calculate the minimum binary margin. However,
for an unlabeled example, it is computationally infea-
sible to consider all d! possible permutations to eval-
uate the minimum margin on the set of binary ex-
amples in the worst-case. Therefore, we approximate
the permutation yielding minimum margin by the pre-
dicted permutation of an unlabeled ranking example.
In the case of the probabilistic voting strategy, we con-
sider an analogous best worst-case approach with re-
spect to minimum binary class probabilities. To sum-
marize the selection criterion for the pairwise ranking
model, we calculate the predicted rankings for all un-
labeled examples and select that unlabeled example
which achieves minimum margin (class probability) on
the set of binary problems.

4. Experiments

4.1. Experimental Setting

To evaluate the efficiency of our novel selection crite-
ria, we conducted a number of experiments using sup-
port vector machines (Chang & Lin, 2001) as binary
linear learners. Due to the lack of suitable real-world
datasets, we generated artificial data considering three
different settings.

Linear: We replicate a setting proposed by Fürnkranz
and Hüllermeier (2003) from the field of expected util-
ity theory: An expected utility maximizing agent is

given a set {1, . . . , d} of alternative actions to choose
from. The agent faces a problem of decision under un-
certainty with alternative i yielding a utility [U ]ij ∈ R
if the world is in state ωj ∈ Ω = {ω1, . . . , ωn}. The
probability of state ωj is denoted by [p]j and, there-
fore, the expected utility of alternative i is given by
E(i) =

∑n
j=1[p]j [U ]ij . Thus, giving rise to a natural

order over the set of alternative actions. We assume
the set of alternatives to be in decreasing order with
respect to expected utility in the following. Let us
assume the probability vector p = ([p]1, . . . , [p]n) to
be the feature vector of a ranking example while the
number of alternatives d and the set of world states Ω
being fixed and the d×n utility matrix U having inde-
pendently uniformly distributed entries [U ]ij ∈ [0, 1].
Then, for a given probability vector p the above stated
decision-theoretic scenario gives rise to an order over
the set of alternative actions. Now, a set of m fea-
ture vectors is independently drawn from a uniform
distribution over {p ∈ Rn | p ≥ 0, [p]1 + · · ·+ [p]n = 1}
and assigned to corresponding permutations to gener-
ate a ranking dataset. Note that this setting corre-
sponds to a noise-free scenario in the constraint classi-
fication framework since for a given feature vector p an
alternative way to express the corresponding ranking
is y = argsorti=1,...,d 〈ui, p〉 (with ui denoting the i-th
row vector of U). We conducted our experiments on
this dataset using a linear kernel with penalty param-
eter C = 100.

MinMax: This setting considers a modified (non-
linear) preference relation generated by E(i) =
minj=1,...,n max([U ]ij , 1 − [p]j). It can be viewed as
a special case of a pessimistic criterion to evaluate the
worth of an alternative in a possibilistic decision frame-
work (Dubois et al., 2001). To stay consistent with the
herein stated assumptions, for each feature vector p a
single feature is randomly selected and set to 1. On
this problem, we used an RBF-kernel with γ = 0.1 and
penalty parameter C = 100.

QRank: We train a Naive Bayes classifier on the ve-
hicle multiclass dataset from the UCI repository. For
each example the set of possible class labels (alterna-
tives) is ordered with respect to the a posteriori prob-
abilities assigned by the Naive Bayes classifier. From a
more abstract point of view, we consider the problem
of learning a qualitative replication of the order over a
set of alternatives induced by a probabilistic classifier.
As for the former setting, we use an RBF-kernel with
the default value of γ = 1/#features and C = 100.

For both the Linear and the MinMax scenario, we fixed
the number of input features to n = 10. For each num-
ber of alternatives d ∈ {5, 10, 15, 20}, we generated 100



different datasets consisting of 2000 examples, each
dataset originating from a different utility matrix U .
Each dataset was randomly split into a training set
and a test set of equal size. In the QRank scenario,
we cannot sample new data for each run. Instead,
the same underlying dataset was randomly split into
a training set and a test set of equal size for each run
in compliance with comparable research on real-world
data. While new training examples were selected from
the training sets, the generalization accuracy was esti-
mated on the test sets.

The well-known Spearman rank correlation coefficient
(rank correlation) was used as the evaluation metric
on the true rankings y and predicted rankings y′:

c(y, y′) = 1−
6

∑d
i=1([y]i − [y′]i)2

d(d2 − 1)
.

The rank correlation evaluates to −1 for reversed pref-
erence orders and to +1 for identical orders. Moreover,
the rank correlation was averaged over all examples in
a test set. Due to space restrictions, we do not com-
ment on alternative evaluation measures.

In addition to our novel active learning generaliza-
tion of the pairwise and constraint classification tech-
nique, we investigated random selection of new exam-
ples as a baseline strategy for each of the approaches.
We started with a randomly selected set of 10 la-
beled examples in all experiments and sequentially se-
lected 90 examples using the different selection crite-
ria. The rank correlation was evaluated after every 10
rounds and finally the results were averaged over all
100 datasets generated in each of the settings.

4.2. Experimental Results

Remember that the choice of kernel is not optimized
with respect to the different techniques. Therefore, we
compare random learning with their active counter-
parts separately for each approach and do not focus on
quantitative comparison of different techniques. Ta-
ble 1 shows average rank correlations and correspond-
ing standard errors of the mean for different numbers
of labeled examples. Due to space restrictions, for
the Linear and MinMax scenario, detailed results are
stated only for the number of alternatives being fixed
to d = 10.

Linear: All active strategies consistently outperform
their random counterparts for all choices of the number
of alternatives. While there is a substantial increase of
accuracy in the case of d = 5 alternatives, it becomes
marginal in the case of constraint classification with
the number of alternatives increasing. In contrast to
this, for the pairwise decomposition techniques, the

absolute rise in accuracy at fixed numbers of labeled
examples increases with the number of alternatives.

MinMax: The active standard pairwise strategy
achieves a level of accuracy for 20 labeled examples
(independent of d) that is very close to that of ran-
dom learning of 100 examples. For the probabilistic
pairwise technique there is a substantial increase of
accuracy for d = 5, 10, whereas for d = 15, 20 the ac-
tive strategy is superior at the beginning while random
learning slightly outperforms its active counterpart at
the end. In the case of constraint classification, we ob-
served a pattern similar to in the former setting: Ac-
tive learning consistently outperforms random learn-
ing. The gain of accuracy decreases with the number
of alternatives increasing.

QRank: Again, active constraint classification learn-
ing consistently outperforms random learning. Com-
pared to the former approach, both pairwise decom-
position strategies yield an even more significant de-
crease of the labeling effort: The reduction is roughly
two-fold, e.g. actively learning circa 50 examples yields
the same estimated generalization accuracy than ran-
domly learning 100 examples.

As in classification learning, the efficiency of active
learning clearly depends on the given ranking prob-
lem. In our experiments, active learning based on the
constraint classification approach consistently outper-
forms random learning. Both active learning based
on standard and probabilistic pairwise decomposition
yields a more significant relative reduction of the la-
beling effort in most of the experiments. Furthermore,
the computational effort to solve a ranking problem
based on the constraint classification technique was
more than two orders of magnitude higher than that
of both pairwise decomposition techniques. Therefore,
our experiments suggest that it is favorable to make
use of the pairwise decomposition approach when ac-
tively learning a ranking function.

5. Related Work

Beyond the (label) ranking model, there are alterna-
tive preference models which consider different learn-
ing scenarios. In the field of statistical decision theory
and mathematical economics, the problem of learning
a (preference) utility function (von Neumann & Mor-
genstern, 1944) of a given individual is referred to as
preference elicitation. While in this case the objec-
tive is to assign real-valued utility scores to examples
according to a single user’s preferences, ranking func-
tions assign a finite preference order to each example.
More generally, in the former model, examples corre-



Table 1. Experimental results

Setting Strategy∗ 10 20 30 40 50 60 70 80 90 100

random cc 0.419 0.594 0.697 0.753 0.793 0.821 0.842 0.856 0.869 0.879
±0.010 ±0.007 ±0.005 ±0.004 ±0,004 ±0.003 ±0.003 ±0.003 ±0.002 ±0.002

active cc 0.412 0.602 0.710 0.770 0.809 0.837 0.855 0.872 0.885 0.896
±0.010 ±0.007 ±0.005 ±0.004 ±0.004 ±0.003 ±0.003 ±0.002 ±0.002 ±0.002

random pw 0.356 0.463 0.532 0.582 0.622 0.651 0.677 0.699 0.717 0.730
Linear ±0.013 ±0.011 ±0.010 ±0.009 ±0.008 ±0.007 ±0.007 ±0.006 ±0.006 ±0.005

(d = 10) active pw 0.361 0.476 0.566 0.627 0.671 0.705 0.731 0.753 0.769 0.784
±0.012 ±0.011 ±0.008 ±0.007 ±0.007 ±0.006 ±0.005 ±0.005 ±0.005 ±0.005

random ppw 0.394 0.513 0.586 0.640 0.676 0.703 0.723 0.741 0.758 0.771
±0.013 ±0.010 ±0.009 ±0.007 ±0.006 ±0.005 ±0.005 ±0.005 ±0.004 ±0.004

active ppw 0.389 0.544 0.644 0.705 0.744 0.771 0.791 0.807 0.819 0.831
±0.012 ±0.009 ±0.007 ±0.006 ±0.005 ±0.004 ±0.004 ±0.004 ±0.004 ±0.003

random cc 0.502 0.634 0.718 0.767 0.803 0.833 0.853 0.868 0.881 0.891
±0.007 ±0.007 ±0.006 ±0.005 ±0.005 ±0.004 ±0.004 ±0.003 ±0.003 ±0.003

active cc 0.506 0.683 0.763 0.812 0.844 0.868 0.887 0.900 0.910 0.919
±0.008 ±0.007 ±0.005 ±0.005 ±0.005 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004

random pw 0.614 0.807 0.886 0.917 0.928 0.933 0.936 0.937 0.938 0.939
MinMax ±0.011 ±0.009 ±0.007 ±0.006 ±0.005 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004

(d = 10) active pw 0.621 0.931 0.936 0.939 0.940 0.942 0.944 0.945 0.945 0.946
±0.011 ±0.004 ±0.004 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003

random ppw 0.480 0.720 0.828 0.878 0.901 0.912 0.920 0.923 0.924 0.926
±0.010 ±0.008 ±0.007 ±0.006 ±0.005 ±0.005 ±0.004 ±0.004 ±0.004 ±0.004

active ppw 0.511 0.752 0.874 0.907 0.918 0.922 0.926 0.928 0.930 0.932
±0.010 ±0.008 ±0.005 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004

random cc 0.613 0.677 0.718 0.741 0.759 0.773 0.782 0.793 0.800 0.807
±0,008 ±0,004 ±0,004 ±0,003 ±0,003 ±0,003 ±0,003 ±0,003 ±0,002 ±0,003

active cc 0.599 0.687 0.741 0.764 0.782 0.798 0.810 0.819 0.828 0.837
±0.007 ±0.004 ±0.003 ±0.003 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002

random pw 0.655 0.710 0.743 0.762 0.779 0.789 0.799 0.807 0.817 0.823
±0.008 ±0.005 ±0.004 ±0.003 ±0.003 ±0.003 ±0.002 ±0.002 ±0.002 ±0.002QRank

active pw 0.649 0.737 0.785 0.812 0.823 0.831 0.838 0.843 0.847 0.849
±0.007 ±0.004 ±0.003 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002 ±0.001 ±0.001

random ppw 0.600 0.673 0.708 0.726 0.741 0.756 0.766 0.775 0.785 0.792
±0.008 ±0.005 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.002 ±0.002

active ppw 0.615 0.703 0.754 0.785 0.804 0.816 0.828 0.832 0.836 0.841
±0.009 ±0.004 ±0.003 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002

∗ constraint classification (cc), standard pairwise (pw), probabilistic pairwise (ppw).

spond to decision alternatives, whereas in the latter
model a finite set of alternatives is a priori fixed and
examples correspond to different individuals. Learn-
ing a utility function can be considered as a regression
problem. In the field of kernel methods, Crammer and
Singer (2002) introduced an online algorithm to learn
a utility function on an ordinal scale which is used
to order a set of new examples with respect to their
ordinal utility scores. This problem is also referred
to as ordinal regression and has been investigated in
the batch setting by Herbrich et al. (2000). Beyond
the class of regression-based preference models, Cohen
et al. (1999) propose a two-stage approach to prefer-
ence learning: In stage one, they learn a probabilistic
preference function on pairs of given examples which in
stage two is used to order a given set of new examples
in some (approximately) optimal sense.

In the field of active learning, there are two princi-
ple categories of approaches: So-called query learn-
ing (Angluin, 1988) refers to a learning model where
the learning algorithm is given the ability to gen-
erate new examples and request the corresponding

true class labels. Whereas in selective sampling the
learner is restricted to request labels of a finite set
of examples (pool-based model) or the learning algo-
rithm has to decide whether to request the correspond-
ing true labels for sequentially presented single exam-
ples (stream-based model). The well-studied Bayesian
query-by-committee (Seung et al., 1992; Freund et al.,
1997) approach considers the latter scenario and de-
cides to request class labels based on the disagreement
within a set of Gibbs classifiers.

6. Conclusion

We introduced novel extensions of pool-based active
learning to label ranking problems based on both the
constraint classification technique and pairwise decom-
position of preferences. Experimental results clearly
indicate that active learning can significantly reduce
the labeling effort in ranking learning. Considering
that is more expensive to label ranking rather than
classification examples, the benefit of active ranking
learning becomes even more evident.
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