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Ulrich R ückert RUECKERT@IN .TUM .DE

Stefan Kramer KRAMER@IN .TUM .DE

Technische Universität München, Institut f̈ur Informatik/I12, Boltzmannstr. 3, D-85748 Garching b. München, Germany

Abstract
While there is a lot of empirical evidence show-
ing that traditional rule learning approaches work
well in practice, it is nearly impossible to derive
analytical results about their predictive accuracy.
In this paper, we investigate rule-learning from
a theoretical perspective. We show that the ap-
plication of McAllester’s PAC-Bayesian bound
to rule learning yields a practical learning algo-
rithm, which is based on ensembles of weighted
rule sets. Experiments with the resulting learn-
ing algorithm show not only that it is compet-
itive with state-of-the-art rule learners, but also
that its error rate can often be bounded tightly. In
fact, the bound turns out to be tighter than one of
the “best” bounds for a practical learning scheme
known so far (the Set Covering Machine). Fi-
nally, we prove that the bound can be further im-
proved by allowing the learner to abstain from
uncertain predictions.

1. Introduction

Rule learning has a long history within the field of ma-
chine learning. One of the main reasons for the popularity
of rule learning is that rules are considered to be a con-
venient representation of regularities and interrelations for
humans. Many learning settings can be adapted to allow
for the application of rule learning systems. Usually, the
goal in rule learning is to find a set of rules that has high
predictive accuracy and that is as small as possible. His-
torically, most research on rule learning has concentrated
on separate-and-conquer approaches, often combined with
sophisticated pruning and postprocessing methods to avoid
overfitting. While there is a lot of empirical evidence show-
ing that those approaches work very well in practice, it is
very hard to investigate them analytically. This is due to the
combinatorial complexity inherent in rule learning and the
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fact that the impact of pruning and postprocessing meth-
ods on predictive accuracy is hard to estimate a priori. In
contrast, decision trees have been the subject of many em-
pirical and theoretical investigations (e.g. (Breiman, 2001;
Golea et al., 1998; Mansour & McAllester, 2000)). The
main goal of this work is to design a rule learning system
that is not only competitive with established rule learning
systems in terms of predictive accuracy, but that is also
accessible to an analytical investigation. In particular, we
would like to give non-trivial upper bounds on the predic-
tion error of the proposed algorithm.

Of course, rule learning algorithms are not suited for all
learning settings. If a data set features many (possibly re-
lated or noisy) continuous attributes, a conjunction of liter-
als of the form “attribute< value” allows only for a rough
and angular separation of the instance space. In those cases
it is usually more sensible to use smooth separating func-
tions as in Support Vector Machines or Neural Networks.
In this work we restrict ourselves therefore to nominal-
valued data sets. Another problem is that pure rule learn-
ing algorithms tend to beunstable, in the sense that a small
change of the training set often leads to a large change in
the induced rule set. This is due to the combinatorial nature
of rule learning. The instability can increase the variance
component of the prediction error. We therefore use en-
sembles of rule sets to keep the variance low and improve
predictive accuracy.

The paper is organized as follows: after introducing the
learning setting in section 2, we describe a novel rule learn-
ing system in sections 3 and 4. In section 5 we investigate
the system theoretically, and then present empirical results
in section 6.

2. The Learning Setting

To give a precise description of the learning algorithm and
the underlying theory, we need to introduce a few defini-
tions and state basic assumptions. First of all, training and
test data are given as sets of labeledinstances, taken from
aninstance spaceX . The instance space is structured as the
cartesian product ofn domainsAi, so that each instancex



is represented by ann-tuple (x1, x2, . . . , xn), where each
xi denotes a value taken fromAi. We require that all do-
mains are finite, so continuous attributes need to be dis-
cretized in order to fit into our framework. Furthermore,
let Y be a finite set ofclasses. We assume a fixed, but
unknown distributionD on the pairs(x, y) ∈ X × Y. A
training setS is generated by drawingm labeled instances
(x, y) independently according toD. The learning algo-
rithm is given the sampleS. Upon termination it outputs
a conceptc that maps instances to classes. The main goal,
of course, is to come up with an algorithm that generates a
conceptc with provably low errorPr(x,y)∼D[c(x) 6= y].

Since we are working in the field of rule learning, we use
a particular representation for the concepts to be learned.
First of all, aliteral is of the form(ai = vi) or ¬(ai = vi)
for any1 ≤ i ≤ n, whereai identifies the attributei and
vi is a value taken from the corresponding domainAi. A
conjunction of literals is arule. A rule is said tocoveran
instance, if the conditions imposed by all literals in the rule
are met by the instance. Not surprisingly, arule set is a
set of rules. A rule set covers an instance, if any rule in
the rule set covers it. If we havep distinct class labels,
a labeled rulesetri := (r, yi) is a ruleset together with a
class label. We can use a labeled rule setri to predict the
classri(x) given an instancex:

ri(x) :=
{

+1 if x is covered byri

−1 otherwise
(1)

The class of all possibleyi-labeled rule sets is denoted by
Ri. In the next section we deal with the problem of finding
rule sets that agree with the labeled instances of a training
set.

3. Stochastic Local Search

One can easily transform any learning problem with nom-
inal attributes into an equivalent problem containing only
boolean attributes. If we do so, the problem of finding rule
sets of a fixed size with low error on a given training set be-
comes the optimization version of thek-term DNF learning
problem:

Given

• a set ofn attributesA1, . . . , An, where all Ai ∈
{−1,+1},

• a training set of m labeled instances
(x1, y1), . . . , (xm, ym), where all xi ∈

∏
i Ai

and allyi ∈ {−1,+1},

• a natural numberk

Find a +1-labeled rule setr containing exactlyk rules over
the literals onA1, . . . , An, so that the number of misclassi-

fied instancesΣ1≤i≤nI(r(xi) 6= yi) is minimal (I(.) is the
indicator function).

Unfortunately this problem is known to be NP-hard
(Kearns & Vazirani, 1994). We are therefore forced to
use an approximation algorithm to keep the computational
costs of learning low. The set covering approach, that is
taken by most traditional rule learning systems, does not
allow to restrict the size of the induced rule set and is there-
fore not suited for our purposes. Instead, we use astochas-
tic local search(SLS) approach (Hoos, 1998). SLS algo-
rithms differ from other approaches in that they perform a
local, random walk search. In its basic incarnation, an SLS
algorithm starts with a randomly generated solution candi-
date. It then iterates in a two-step loop: in the first step it
examines a fixed set of “neighboring” candidates according
to some predefined neighborhood relation. Each neighbor
is evaluated according to a global scoring function. In the
second step the SLS algorithm selects the neighbor with
the best score as next candidate. Such a greedy hill climb-
ing approach is obviously susceptible to getting caught in
local optima. Most SLS algorithms therefore select with
a fixed probabilityp a random neighboring candidate in-
stead of the candidate with the highest score. In this way
they can escape local optima through random steps. In the
following we describe an SLS algorithm for k-term DNF
learning, that has been shown to work well on hard learn-
ing problems (R̈uckert & Kramer, 2003).

For k-term DNF learning, the score to be minimized is
the number of misclassified instances. The SLS algorithm
starts with a random rule setr of k rules. It then randomly
picks a misclassified instancex. Assumex is labeled +1,
but not covered byr. Thus,r is obviously too specific: we
have to remove at least one literal in order to letr coverx.
Consequently, the algorithm generalizes the rulet in r that
differs in the smallest number of literals fromx. It gen-
erates for each literalli in t a new “neighboring” rule set
by removingli from t. The neighboring rule set with the
lowest score is the new candidate to be further optimized.
If the randomly chosen instancex is labeled -1, but erro-
neously covered byr, the current rule setr is too general.
Let t be the rule that coversx. We have to add a literal tot
in order to makex uncovered. Again we can generate a set
of neighbors by adding one literal tot and then choose that
neighbor whose score is the lowest. In order to escape lo-
cal optima, the algorithm replaces each decision step with
a random decision from time to time. Algorithm 1 sketches
the idea. A more elaborate description of the algorithm can
be found in (R̈uckert & Kramer, 2003).

4. Learning Ensembles of Rule Sets

Learning algorithms inducing individual rule sets are unsta-
ble in the sense that small perturbations in the training data



Algorithm 1 An SLS algorithm for k-term DNF learning.
k is the number of rules per rule set. Global variables taking
default values:maxSteps specifies the maximal length of
search,pg1, pg2, andps are the probabilities for random
steps.

procedureSLSearch(k)
r← a randomly generated rule set withk rules
steps← 0
while score(r) 6= 0 andsteps < maxSteps do

steps← steps + 1
x← a random instance that is misclassified byr
if x is labeled +1then

t←

 with probabilitypg1: a random rule inr
otherwise: the rule inr that differs
in the smallest number of literals fromx

l←

 with probabilitypg2: a random literal int
otherwise: the literal int whose removal
decreasesscore(r) most

r← r with l removed fromt
else ifx is labeled -1then

t← a (random) term inr that coversx

l←


with probabilityps: a random literalm
so thatt ∧m does not coverx
otherwise: a random literal whose
addition tot decreasesscore(r) most

r← r with l added tot
end if

end while
return the bestr found so far

end procedure

Algorithm 2 The rule learning algorithm.S is the training
set,kmax the maximal number of rules per rule set,o the
number of rule sets per ensemble and rule set sizek, andν
is the noise probability.

procedureLearnEnsemble(S, kmax, o, ν)
for cl = 1 to p do

Qcl ← empty ensemble
for k = 1 to kmax do

for s = 1 to o do
rs← SLSearch(k)
w ← exp(−ν l̂(rs, S))
Qcl ← Qcl ∪ {(rs, w)}

end for
end for
Normalize the weights inecl to sum up to one

end for
return{Q1, . . . , Qp}

end procedure

may result in large changes in the rules. In order to avoid
unstable behavior, we now consider learning ensembles of
rule sets. Algorithm 2 learns one ensemble per class. The

rule sets in the ensemble are sampled using the SLS algo-
rithm. Since we do not know the the optimal number of
rules per rule setk in advance, we sample a constant num-
ber of rule sets for eachk up to a user-specified limitkmax.

Of course, the sampled rule sets differ in their ability to ex-
plain the training set. It makes sense to keep, along with
each rule set, a probabilityQ(ri) depending on theRi’s er-
ror on the training set. If the user has information about the
noise behavior of the underlying target distribution, she can
use this information to generate a matching noise model
and generateQ accordingly. If, for example, the noise level
is higher for some parts of the instance spaceX , one would
want to baseQ(ri) on the misclassified instances at hand:
if a rule set misclassifies only “noisy” instances, a higher
probability is assigned than for a rule set that misclassi-
fies relatively stable instances. As a conservative default
strategy we use aQ that assigns a probability that is expo-
nentially decreasing with its empirical error onS to each
ri:

Q(ri) :=
exp(−ν l̂(ri, S))

ΣQ(ri) 6=0 exp(−ν l̂(ri, S))
, (2)

wherel̂(ri, S) denotes the empirical error ofri on the sam-
pleS (cf. section 5), andν specifies the rate of decay. This
corresponds to a white noise model, where the error prob-
ability is constantα := exp(−ν/m) across all instances.
Similar models have been studied, e.g., in (Littlestone &
Warmuth, 1994).

The learning algorithm should also be able to handle multi-
class problems directly. Up to now, we only consider the
case of two-class problems. Dealing with multi-class prob-
lems has traditionally been problematic for rule learning
systems. For the sake of simplicity, we employ a sim-
ple one-vs-all scheme here: we learnp ensemblesQi,
where ensembleQi distinguishes between class labelyi

andY \ {yi}. As the scores can be seen as a measure of
how certain an ensemble is about its prediction (cf. section
5.2), it makes sense to choose that classyi with the largest
scorec(Qi, x).

5. Bounds for Rule Learning

In the following, we will present a theoretical analysis of
the above algorithm. The goal is to bound its expected pre-
diction error. In the first part, we show how McAllester’s
PAC-Bayesian theorem can be used to bound the error in
ensemble rule learning. In the second part, we prove that
the PAC-Bayesian bound can be further improved by al-
lowing the learner to abstain from uncertain predictions.
Together, these results are more generally applicable, but
they serve well the purpose of bridging the gap between
theory and practice for rule learning.



5.1. The PAC-Bayesian Bound for Rule Learning

Two-class problems are generally easier to handle than
multi-class problems. We therefore usecharacteristic func-
tionsχi to split ap-class problem intop 2-class problems:
let Y be a set ofp class labels. Just likeri(x), χi(y) is
defined to be +1, ify = yi, and -1 otherwise. To esti-
mate the rule set’s predictive behavior we are especially
interested in the cases where the classyi assigned by the
rule set disagrees with the “true” classy of an instance
x. To measure the rate of misclassification, we introduce
a loss function: let (x, y) be a labeled instance drawn ac-
cording to D, and ri a labeled ruleset. Then theloss
l(ri, x, y) := I(ri(x) 6= χi(y)) is 0, if the prediction agrees
with the “true” classy, and 1 otherwise. Intuitively,l is a
0-1 loss for measuring whether the prediction of a rule set
agrees with an observation drawn fromD, when we are
only distinguishing between class labelyi and the remain-
ing class labels.

Theexpected lossl(ri) := E(x,y)∼D[l(ri, x, y)] indicates,
how often the rule setri disagrees with the “true class”
on average. Given a sampleS of size m, the empiri-
cal loss l̂(ri, S) := 1

mΣ(x,y)∈Sl(ri, x, y) yields the frac-
tion of instances inS that are misclassified byri. The
PAC-Bayesian theorem deals with (prior and posterior)
distributions on the spaceRi of yi-labeled rule sets. If
Q is an arbitrary probability measure onRi, we can ex-
tend the notion of a loss to distributions instead of sin-
gle rule sets: l̂(Q,S) := Eri∼Q[l̂(ri, S)] and l(Q) :=
Eri∼Q[l(ri)]. Furthermore, to compare prior and posterior
distributions, we need the well known Kullback-Leibler di-
vergence, denoted byD(Q‖P ) := Σr∈R(Q(r) ln Q(r)

P (r) ).
As a notational shortcut we write∀δS Φ(S) instead of
PrS∼D[Φ(S)] ≤ 1 − δ to express thatΦ holds for all but
a fractionδ of the cases. With this we can state the PAC-
Bayesian theorem:

Theorem 1 (PAC-Bayesian, (McAllester, 1999)).Let
yi ∈ Y be a class label, letP be a distribution over the
space ofyi-labeled rule setsRi, let δ > 0, and define:

B(Q,P,m, δ) :=

l̂(Q,S) +

√
D(Q‖P ) + ln 1

δ + lnm + 2
2m− 1

Then, whereQ ranges over all distributions onRi:

∀δS ∀Q l(Q) ≤ B(Q,P,m, δ)

This theorem can be used to upper-bound the expected er-
ror of an ensemble classifier in the following way: the user
provides a prior distributionPi on the rule set spaceRi. If
she has some information about which rule sets are most
likely to resemble the “true” target distributionD, she can

use this information by selecting aPi that assigns high
probabilities to those rule sets. If she does not have any
such information, she can simply select an uninformative,
flat prior. In the next step she draws a sampleS of size
m from D. It is now the task of the learning algorithm to
select a distributionQi on Ri for each class labelyi. The
algorithm aims at findingQi that minimize the right hand
side of the inequality and thus provides a tight upper bound
on the expected error of rule sets drawn according toQi.

Using thoseQi and the PAC-Bayesian theorem one can
construct a voting ensemble of weighted rule sets, and
bound its generalization error. Let̄Q := (Qi, . . . , Qp).
Then:

c(Qi, x) := E
ri∼Qi

[ri(x)] (3)

cV (Q̄, x) := argmax
yi∈Y

c(Qi, x) (4)

c(Q, x) is thescoreof Q on x andcV (Q̄, x) denotes the
voting classifierfor Q̄. The expected error of the vot-
ing classifier is thuslV (Q̄) := E(x,y)∼D[I(cV (Q̄, x) 6=
y)]. The following theorem bounds the expected error
of the voting classifier for two-class problems, i.e.̄Q =
(Q1, Q2). Bounds for multi-class problems can be derived
in a similar fashion.

Theorem 2. For i ∈ {1, 2} let yi ∈ Y be class labels,Pi

be distributions over the spaces ofyi-labeled rule setsRi,
let δ > 0, andQ̄ = (Q1, Q2) be as above. Then:

∀δS ∀Q lV (Q̄) ≤ B(Q1, P1,m, δ) + B(Q2, P2,m, δ)

Proof. First, observe that for̄Q = (Q1, Q2):

lV (Q̄) = Pr
D

[χ1(y)c(Q1, x) + χ2(y)c(Q2, x) ≤ 0] (5)

Additionally,

1− 2l(Qi) = 1− 2 E
D

[
E
Qi

[I(ri(x) 6= χi(y))]
]

= 1− 2 E
D

[
E
Qi

[
1
4
(ri(x)− χi(y))2]

]
(6)

= 1− 1
2 E

D

[
E
Qi

[ri(x)2 − 2ri(x)χi(y) + χi(y)2]
]

= 1− 1
2

(
1− 2 E

D

[
E
Qi

[ri(x)χi(y)]
]
+ 1

)
(7)

= E
D

[χi(y) c(Qi, x)]

(6) uses the fact thatI(a 6= b) = 1
4 (a − b)2 for a, b ∈

{−1,+1}, (7) usesa2 = 1 for a ∈ {−1,+1}. It follows
from theorem 1:

∀δ S : E
D

[χi(y)c(Qi, x)] = 1− 2l(Qi) (8)

≥ 1− 2B(Qi, Pi,m, δ)



Now, let C := 2 − χ1(y)c(Q1, x) − χ2(y)c(Q2, x) be a
random variable. SinceC ≥ 0 for all x, y,Q1, Q2, we can
apply Markov’s inequality:

∀ε > 0 : Pr
D

[
C ≥ εE

D
[C]

]
≤ 1

ε
(9)

By definition ofC,

∀ε > 0 : Pr
D

[
χ1(y)c(Q1, x) + χ2(y)c(Q2, x) ≤

2−2ε+εE[χ1(y)c(Q1, x)]+εE[χ2(y)c(Q2, x)]
]
≤ 1

ε

and because of (8)

∀ε > 0 ∀δS : Pr
D

[
χ1(y)c(Q1, x) + χ2(y)c(Q2, x) ≤

2− 2ε(B(Q1, P1,m, δ) + B(Q2, P2,m, δ))
]
≤ 1

ε
(10)

The theorem follows from (5) by setting

ε =
1

B(Q1, P1,m, δ) + B(Q2, P2,m, δ)
.

In order to keep this bound as tight as possible, one would
like to find Qi that have low empirical error on the sample
S and that differ from thePi only to a small degree. While
this may be possible theoretically, such a “PAC-Bayesian-
optimal” algorithm would require calculating the empiri-
cal error of all possible concepts in the underlying concept
class. Of course, this is not practical for our purposes, be-
cause the space of rule sets is way too large to be evaluated
exhaustively.

We try to keep the computational costs within a reason-
able range by taking two measures: first, we limit the max-
imum size of the rule sets to be considered. This is neces-
sary anyway, because rule sets of arbitrary size can repre-
sent all possible dichotomies. If a flat prior is used and we
chooseQ only depending on the training set, this is effec-
tively bias-free learning, which is known to be equivalent
to rote learning. Thus, we restrict our concept space to the
set of all rule sets with at mostkmax rules per rule set. This
bias towards short hypothesis is motivated by the principle
of William of Ockham and – in one form or the other –
included in virtually any existing rule learning algorithm.
Second, instead of considering all possible rule sets for a
Qi, we sample a small number of rule sets fromRi, and set
the probability measureQi to zero for all rule sets outside
the sample. In this way, we have to deal with only a rather
small number of concepts; the calculation ofc(Qi, x) in-
volves only the summation over the few rule sets with non-
zeroQi(ri) and the task of predicting and estimating the
expected error becomes feasible.

Unfortunately, it is a bad idea to sample uniformly or ac-
cording toPi from Ri, because the bound depends on the
empirical error̂l on the training set. Thus, if the sampled
rule sets have a high error on the training set, the bound
will be loose. It is therefore essential that we select rule
sets with low empirical error. As stated above, we employ
an SLS algorithm that finds DNFs with low empirical error
in a randomized fashion to achieve this goal.

5.2. Improving the Bound Through Abstaining

Most rule learning systems are designed to assign a class to
any instance that was input for classification. In practice,
though, it is often the case that some instances clearly be-
long to one class, while other instances are just in between
two classes or particularly susceptible to noise. A classifier
that abstains from classification for instances of the latter
kind might feature a much higher predictive accuracy, be-
cause it avoids errors on uncertain predictions. Sometimes,
abstaining can give important hints to the user, e.g. about
the existence of a previously unknown class label.

These considerations lead to a different approach for get-
ting tighter bounds: allowing the classifier to abstain from
a classification for uncertain instances. In our case we can
assess the deviation of the votes in an ensemble as a mea-
sure of how certain the corresponding prediction is. If all
rule sets in an ensemble vote for the same class label, the
classification is quite certain. If, on the other hand, the
weight of the rule sets that vote foryi differs only by a
small margin from the weight of the rule sets that vote for a
differentyj , the classification can be regarded as uncertain.
Thus, it might make sense to abstain from a classification,
if the absolute value of the margin is lower than a certain
thresholdθ > 0. For the two-class setting, the following
definition gives theabstaining voting classifiercθ

V . Again,
the concept can be easily extended to the multi-class set-
ting.

cθ
V (Q̄, x) :=

 y1 if c(Q1, x)− c(Q2, x) ≥ θ
0 if − θ < c(Q1, x)− c(Q2, x) < θ
y2 if c(Q1, x)− c(Q2, x) ≤ −θ

The expected error of this abstaining classifier is

lθB(Q̄) := E
(x,y)∼D

[I(cθ
V (Q̄, x) 6= 0 ∧ cθ

V (Q̄, x) 6= y)]

= Pr
(x,y)∼D

[χ1(y)c(Q1, x) + χ2(y)c(Q2, x) ≤ −θ].

(11)

The following adaption of theorem 2 improves the PAC-
Bayesian bound for an ensembleQ̄, if the abstaining voting
classifier is used instead of the voting classifier.

Theorem 3. Let they1, y2, P1, P2, Q1, Q2, and δ be as



above, letθ > 0. Then:

∀δS ∀Q̄ lθV (Q̄) ≤ B(Q1, P1,m, δ) + B(Q2, P2,m, δ)
1 + 1

2θ

Proof. The result follows from (11) and by setting

ε =
1 + 1

2θ

B(Q1, P1,m, δ) + B(Q2, P2,m, δ)
(12)

in (10).

6. Experiments

In this section we describe an empirical evaluation of the
presented rule learning algorithm. The goal of the first
experiment is to investigate how the presented algorithm
compares to modern rule learning algorithms. To get re-
sults on learning problems with varying characteristics, we
select 34 data sets from the UCI repository (Blake & Merz,
1998). Since the presented rule learning algorithm works
only on nominal attributes, we discretize continuous at-
tributes using a frequency-based discretization with ten in-
tervals. If a data set contains unknown values, we simply
add a new value “unknown” to the corresponding domains,
so that unknown values are treated just like any other value.

To estimate the predictive accuracy of the algorithms we
averaged over ten runs of tenfold cross-validation. The
presented algorithm was set up to build rule sets with up
to eight rules per rule set, and we set theo parameter to
twenty rule sets per level. To calculate theQ(r) probabili-
ties, we chose the “white noise” model described in section
4 with the noise parameterα set to 0.9. The SLS algo-
rithm was set up to search for 5000 iterations, withpg1,
pg2, pS set to the default values of 0.1, 0.2, and 0.1, re-
spectively. We compare the results for the presented al-
gorithm with the results of a support vector machine with
RBF kernel and two state-of-the art rule learning systems.
PART (Frank & Witten, 1998) is a separate-and-conquer-
based rule learning algorithm, that avoids over pruning by
obtaining rules from partial decision trees. JRIP (an imple-
mention of Cohen’s RIPPER (Cohen, 1995) in the WEKA
workbench (Witten & Frank, 1999)) combines separate-
and-conquer with incremental reduced error pruning and
an iterated post-processing optimization step. To include
ensemble-based approaches, we estimated the predictive
accuracy of twentyfold-bagged versions of the two algo-
rithms. The results are given in table 1. Table 2 shows
how different methods compare to each other. Each en-
try indicates the number of data sets for which the method
associated with its row is significantly more accurate than
the method associated with its column according to a paired
two-sided t-test on a 1% significance level over the runs. As
can be seen, the presented algorithm performs favorably. It

Bagged Bagged Rule
SVM PART JRIP PART JRIP Ens.

SVM 16 16 10 11 9
PART 18 16 2 5 7
JRIP 14 9 0 1 4
Bagged PART 22 28 27 14 14
Bagged JRIP 19 22 26 6 7
Rule Learn 22 23 24 11 16

Table 2. Results: each number identifies the number of data sets,
on which the method in the row significantly outperforms the
method in the column.

Rule Ens. Consistent Simple
Data Set Bound CV Bound CV Bound CV
breast-w 30.6 3.4 43.6 4.8 15.8 2.3
bupa 54.3 30.7 100.0 38.0 84.6 30.7
credit-a 57.7 13.9 100.0 39.1 87.6 29.9
diabetes 64.1 26.1 99.9 29.9 78.6 26.8
glassg2 76.8 26.8 91.4 22.1 63.8 22.1
haberman 68.0 29.3 99.7 38.1 78.2 31.6
vote 36.5 4.1 71.2 11.5 44.2 11.5

Table 3. Results: the prediction error in percent as estimated by
ten runs of tenfold cross validation and the size of the bound for
the rule set ensemble algorithm, the consistent Set Covering Ma-
chine, and the simple Set Covering Machine.

clearly outperforms SVM, PART, JRIP, and Bagged JRIP,
and is slightly worse than Bagged PART.

For the second experiment, the main goal is to investigate
the gap between the PAC-Bayesian bound and the true er-
ror as estimated by tenfold cross-validation and to com-
pare our results with related approaches. Multi-class prob-
lems require the application of the union bound on the
PAC-Bayesian bounds for thep ensembles, so the result-
ing bound is rather loose. We therefore focus on two-class
problems. We apply the presented algorithm with the same
parameters as above and a flat priorP to a selection of
two-class problems taken from the UCI repository (Blake
& Merz, 1998). To the best of our knowledge, there are
no comparable results on theoretical bounds for rule learn-
ing systems in the literature. The closest approaches in
the literature are SLIPPER (Cohen & Singer, 1999), LRI
(Weiss & Indurkhya, 2000), and the Set Covering Machine
(Marchand & Shawe-Taylor, 2001; Sokolova et al., 2003;
Marchand et al., 2003). SLIPPER and LRI are rule learning
algorithms based on ensembles of individual rules instead
of rule sets. Since they employ voting schemes, they are
amenable to theoretical analysis and also would be able to
abstain from predictions. However, standard approaches to
bounding the error applied to SLIPPER and LRI give rather
loose bounds. Like a rule learning system, the Set Cover-



Bagged Bagged Rule
Data Set SVM PART JRIP PART JRIP Ens.
anneal 92.9 97.2 98.0± 0.4 98.2± 0.2 98.4± 0.2 98.3± 0.1
audiology 43.8 78.8 72.8± 1.6 82.6± 0.6 77.6± 1.3 81.5± 0.9
autos 62.0 70.7 74.2± 2.1 82.2± 0.9 82.3± 1.3 83.4± 0.4
balance-scale 90.7 77.3 71.7± 0.9 85.1± 0.6 80.9± 1.2 83.6± 0.5
breast-cancer 70.3 71.0 71.8± 1.4 72.8± 1.7 74.2± 0.9 73.8± 0.5
breast-w 97.3 94.3 94.1± 0.5 95.3± 0.2 94.8± 0.3 96.6± 0.2
bupa 58.0 58.3 62.1± 0.9 60.9± 1.8 59.7± 1.2 69.3± 0.9
colic 85.9 83.4 84.3± 0.4 85.1± 0.5 85.2± 0.4 82.9± 0.5
credit-a 86.2 85.9 85.4± 0.4 87.0± 0.5 85.7± 0.5 86.1± 0.6
credit-g 71.3 70.7 69.6± 0.7 74.7± 0.6 73.1± 0.6 73.6± 0.5
diabetes 72.4 73.4 71.5± 0.4 73.7± 0.7 72.5± 0.6 73.9± 0.9
glass 54.2 52.3 64.2± 2.5 65.2± 2.0 70.2± 1.8 73.2± 1.1
haberman 73.5 73.5 71.4± 0.7 70.9± 0.7 72.1± 0.5 70.7± 0.4
heart-c 84.8 80.9 78.7± 1.9 83.0± 1.3 81.1± 0.9 78.5± 0.7
heart-h 83.3 78.9 79.4± 1.5 81.3± 1.2 81.0± 0.6 79.8± 0.6
heart-statlog 84.1 78.5 77.6± 1.3 81.2± 0.8 81.3± 0.8 77.1± 1.2
hypothyroid 96.8 97.9 97.9± 0.1 98.2± 0.1 98.1± 0.1 98.1± 0.1
ionosphere 90.3 88.0 90.8± 0.9 90.4± 0.4 91.9± 0.5 91.8± 0.3
iris 90.7 92.0 88.1± 1.5 92.6± 0.6 90.9± 1.3 91.1± 0.3
kr-vs-kp 91.4 99.1 99.2± 0.0 99.4± 0.1 99.4± 0.1 97.8± 0.1
labor 70.2 87.7 76.7± 2.8 84.4± 2.0 83.3± 1.2 93.3± 1.3
lymph 80.4 79.1 78.6± 1.9 85.3± 1.6 80.1± 1.2 84.9± 0.7
mushroom 99.9 100.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
primary-tumor 24.8 40.7 38.7± 1.0 45.3± 1.1 42.0± 0.8 43.6± 0.6
segment 94.4 94.2 91.8± 1.0 95.7± 0.2 96.4± 0.2 97.2± 0.1
sick 97.6 98.1 97.6± 0.1 98.3± 0.1 97.7± 0.0 98.1± 0.0
sonar 76.9 62.0 64.2± 3.3 72.1± 2.1 70.4± 1.2 76.2± 1.4
soybean 88.4 91.8 92.2± 0.5 93.6± 0.3 93.5± 0.3 93.2± 0.2
splice 96.1 92.5 94.3± 0.4 94.9± 0.1 95.8± 0.1 93.8± 0.3
tic-tac-toe 76.2 94.5 97.5± 0.4 99.7± 0.2 98.2± 0.1 99.2± 0.1
vehicle 68.4 67.0 58.8± 1.0 69.9± 1.3 70.0± 0.6 71.8± 0.7
vote 95.2 95.9 95.3± 0.3 96.0± 0.3 95.8± 0.2 95.9± 0.1
waveform-5000 84.6 73.7 72.6± 0.7 80.3± 0.3 80.7± 0.3 82.0± 0.3
zoo 73.3 92.1 87.7± 0.8 92.7± 0.9 90.7± 0.8 95.0± 0.9

Table 1. Results: percentage of correct classifications, together with standard deviation.

ing Machine uses disjunctions1 of boolean-valued features
as concepts. However, unlike rule learners, it disjunctively
joins data-dependent features such as generalized balls and
half-spaces instead of conjunctions of literals. Marchardet
al. derive a bound based on a compression scheme, that can
be compared to the PAC-Bayesian bound. They report em-
pirical and analytical results for a whole range of parameter
settings. In table 3 we reproduce the values for two par-
ticular settings: the “consistent” columns give the results
for the unparameterized version of the data-dependent ball
SCM, which induces only consistent classifiers. The “Sim-

1The Set Covering Machine can induce disjunctions or con-
junctions. Since we are dealing with rule sets, we consider the
disjunctive case only.

ple SCM” is able to derive inconsistent classifiers, but the
results are given for experiments that use only the best pa-
rameter settings among an exhaustive scan of many values
for each data set. Those values are thus much more opti-
mistic than our results, which are based on default param-
eter values that are fixed for all data sets. Nevertheless, the
PAC-Bayesian bound is better in five out of seven cases,
and the presented algorithm achieves a lower prediction er-
ror in five out of the seven cases.

We also performed preliminary experiments with abstain-
ing ensembles of rule sets. To test the validity of this ap-
proach empirically, we estimate the prediction error of the
abstaining Bayes algorithm on the Haberman data set using
tenfold cross-validation. We used the same parameters as
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Figure 1. The difference between the bound and the estimated
prediction error depending on the abstaining parameterθ.

before, but variedθ between 0 and 2. Figure 1 shows the
difference between bound and estimated error. As can be
seen, the relative accuracy of the bound is optimal for val-
ues ofθ near 1. Thus, the bound can in fact be improved
on this dataset for a certain level of abstinence.

7. Discussion

This paper showed that the empirical error of a practical
rule learning algorithm can be bounded theoretically by
applying McAllester’s PAC-Bayesian theorem. We proved
that the PAC-Bayesian bound can be further improved by
allowing the model to abstain from making uncertain pre-
dictions. A preliminary experiment also indicates empiri-
cally the benefit of abstaining from uncertain predictions.
Based on these theoretical considerations, we designed a
new algorithm learning ensembles of rule sets. The per-
formance of the algorithm on standard UCI datasets com-
pares very favorably with state-of-the-art rule learning al-
gorithms and their bagged variants. Experiments showed
that the calculated bounds are reasonably close to the em-
pirical error estimated in tenfold cross-validation. In most
cases the ratio of the bound to the empirical error is smaller
than for the Set Covering Machine, for which one of the
tightest bounds is known. It should be noted that the bound
(and with it the algorithm’s predictive accuracy) can be im-
proved in various ways: one can (1) provide an informative
prior instead of a flat prior, (2) use a matching noise model
instead of the white noise default, (3) increase the ensem-
ble size, or (4) allow for abstaining. Thus, the algorithm
can be easily adopted to a particular setting in the presented
framework. Moreover, it should be possible to extract com-
prehensible consensus rules and statistics over frequently
used features and feature combinations along the lines of
Pfahringeret al.’s work on ADTrees (Pfahringer et al.,
2001). Overall, we hope that this work helps narrowing
the gap between theory and practice for rule learning, one
of the most important practical machine learning schemes.
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