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Abstract

While there is a lot of empirical evidence show-
ing that traditional rule learning approaches work
well in practice, it is nearly impossible to derive
analytical results about their predictive accuracy.
In this paper, we investigate rule-learning from
a theoretical perspective. We show that the ap-
plication of McAllester's PAC-Bayesian bound
to rule learning yields a practical learning algo-
rithm, which is based on ensembles of weighted
rule sets. Experiments with the resulting learn-
ing algorithm show not only that it is compet-
itive with state-of-the-art rule learners, but also
that its error rate can often be bounded tightly. In
fact, the bound turns out to be tighter than one of
the “best” bounds for a practical learning scheme
known so far (the Set Covering Machine). Fi-
nally, we prove that the bound can be further im-
proved by allowing the learner to abstain from
uncertain predictions.

fact that the impact of pruning and postprocessing meth-
ods on predictive accuracy is hard to estimate a priori. In
contrast, decision trees have been the subject of many em-
pirical and theoretical investigations (e.g. (Breiman, 2001;
Golea et al., 1998; Mansour & McAllester, 2000)). The
main goal of this work is to design a rule learning system
that is not only competitive with established rule learning
systems in terms of predictive accuracy, but that is also
accessible to an analytical investigation. In particular, we
would like to give non-trivial upper bounds on the predic-
tion error of the proposed algorithm.

Of course, rule learning algorithms are not suited for all
learning settings. If a data set features many (possibly re-
lated or noisy) continuous attributes, a conjunction of liter-
als of the form “attribute< value” allows only for a rough

and angular separation of the instance space. In those cases
it is usually more sensible to use smooth separating func-
tions as in Support Vector Machines or Neural Networks.

In this work we restrict ourselves therefore to nominal-
valued data sets. Another problem is that pure rule learn-

ing algorithms tend to benstable in the sense that a small

change of the training set often leads to a large change in

the induced rule set. This is due to the combinatorial nature

Rule learning has a long history within the field of ma- of rule learning. The m_stgblllty can increase the variance
. . : .. component of the prediction error. We therefore use en-

chine learning. One of the main reasons for the popularity : )

2 : sembles of rule sets to keep the variance low and improve
of rule learning is that rules are considered to be a con- "~ =
) ) . . : redictive accuracy.

venient representation of regularities and interrelations foP

humans. Many learning settings can be adapted to alloWhe paper is organized as follows: after introducing the

for the application of rule learning systems. Usually, thelearning setting in section 2, we describe a novel rule learn-

goal in rule learning is to find a set of rules that has highing system in sections 3 and 4. In section 5 we investigate

predictive accuracy and that is as small as possible. Histhe system theoretically, and then present empirical results

torically, most research on rule learning has concentrateth section 6.

on separate-and-conquer approaches, often combined with

sophisticated pruning and postprocessing methods to avoig The Learning Setting

overfitting. While there is a lot of empirical evidence show-

ing that those approaches work very well in practice, it isTo give a precise description of the learning algorithm and

very hard to investigate them analytically. This is due to thethe underlying theory, we need to introduce a few defini-

combinatorial complexity inherent in rule learning and thetions and state basic assumptions. First of all, training and

test data are given as sets of labelestancestaken from

aninstance spacg&’. The instance space is structured as the

cartesian product of domains4;, so that each instance

1. Introduction
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is represented by am-tuple (z1, x2, ..., z,), Where each fied instance&;<;<,I(r(z;) # y;) is minimal ((.) is the
x; denotes a value taken fror;. We require that all do- indicator function).

mains are finite, so continuous attributes need to be di
cretized in order to fit into our framework. Furthermore
let Y be a finite set otlasses We assume a fixed, but
unknown distributionD on the pairg(z,y) € X x Y. A
training setS is generated by drawing labeled instances
(z,y) independently according t®. The learning algo-

rithm is given the sampl&. Upon termination it outputs Fore not suited for our purposes. Instead, we uswahas-

a concept'that maps mstapces to clag,ses. The main 9984 local search(SLS) approach (Hoos, 1998). SLS algo-
of course, is to come up with an algorithm that generates a

. rithms differ from other approaches in that they perform a
concepte with provably low erroPr . ;). ple(x) # y|- local, random walk search. In its basic incarnation, an SLS

Since we are working in the field of rule learning, we usealgorithm starts with a randomly generated solution candi-
a particular representation for the concepts to be learnediate. It then iterates in a two-step loop: in the first step it
First of all, aliteral is of the form(a; = v;) or —~(a; = v;) examines a fixed set of “neighboring” candidates according
foranyl < i < n, whereq; identifies the attributé and  to some predefined neighborhood relation. Each neighbor
v; IS a value taken from the corresponding domdin A is evaluated according to a global scoring function. In the
conjunction of literals is aule. A rule is said tocoveran  second step the SLS algorithm selects the neighbor with
instance, if the conditions imposed by all literals in the rulethe best score as next candidate. Such a greedy hill climb-
are met by the instance. Not surprisinglyride setis a  ing approach is obviously susceptible to getting caught in
set of rules. A rule set covers an instance, if any rule inlocal optima. Most SLS algorithms therefore select with
the rule set covers it. If we have distinct class labels, a fixed probabilityp a random neighboring candidate in-
alabeled ruleset; := (r,y;) is a ruleset together with a stead of the candidate with the highest score. In this way
class label. We can use a labeled rulerseb predict the they can escape local optima through random steps. In the
classr;(z) given an instance: following we describe an SLS algorithm for k-term DNF

learning, that has been shown to work well on hard learn-
(1)  ing problems (Rckert & Kramer, 2003).

SL_Jnfortunately this problem is known to be NP-hard

" (Kearns & Vazirani, 1994). We are therefore forced to
use an approximation algorithm to keep the computational
costs of learning low. The set covering approach, that is
taken by most traditional rule learning systems, does not
allow to restrict the size of the induced rule set and is there-

ri(z) = { +1 if z is covered by-;
s —1 otherwise
) ) For k-term DNF learning, the score to be minimized is

The class of all possiblg;-labeled rule sets is denoted by {he nymber of misclassified instances. The SLS algorithm

R;. In the next section we deal with the problem of finding giarts with a random rule setof & rules. It then randomly

rule sets that agree with the labeled instances of a trainingickS a misclassified instanae Assumer is labeled +1,

set. but not covered by. Thus,r is obviously too specific: we
have to remove at least one literal in order toriebverz.

3. Stochastic Local Search Consequently, the algorithm generalizes the titer that

. ) ) differs in the smallest number of literals from It gen-
One can easily transform any learning problem with nom-g4tes for each literd in ¢ a new “neighboring” rule set

inal attribute_s into an equivalent problem conta_lining onlyby removingl; from ¢. The neighboring rule set with the
boolean attributes. If we do so, the problem of finding rulejqyest score is the new candidate to be further optimized.
sets of a fixed size with low error on a given training set be-s the randomly chosen instaneeis labeled -1, but erro-
comes the optimization version of theerm DNF learning neously covered by, the current rule set is too general.

problem Let ¢ be the rule that covers. We have to add a literal to
Given in order to maker uncovered. Again we can generate a set
of neighbors by adding one literal tand then choose that
e a set ofn attributes A, ..., A,, where all4; € neighbor whose score is the lowest. In order to escape lo-
{—1,+1}, cal optima, the algorithm replaces each decision step with
a random decision from time to time. Algorithm 1 sketches
e a training set of m labeled instances theidea. A more elaborate description of the algorithm can
(@1,91), -5 (Tm;ym), Where all z; € [[;Ai  pefound in (Rickert & Kramer, 2003).

and ally; € {—1,+1},
e anatural numbet 4. Learning Ensembles of Rule Sets

Learning algorithms inducing individual rule sets are unsta-

Find a +1-labeled rule setcontaining exactly: rules over X ; - -
ble in the sense that small perturbations in the training data

the literals ond4, ..., A,,, so that the number of misclassi-



Algorithm 1 An SLS algorithm for k-term DNF learning.

rule sets in the ensemble are sampled using the SLS algo-

k is the number of rules per rule set. Global variables takingithm. Since we do not know the the optimal number of

default valuesmax Steps specifies the maximal length of
search,pq1, pg2, andp, are the probabilities for random
steps.
procedure SLSearcht)
r « arandomly generated rule set withrules
steps <+ O
while score(r) # 0 andsteps < maxSteps do
steps «— steps + 1
x «— a random instance that is misclassifiedrby

if x is labeled +1hen
with probabilityp,;: a random rule inr

t «— ¢ otherwise: the rule im that differs
in the smallest number of literals from
with probabilitypg: a random literal irt
l — ¢ otherwise: the literal in whose removal

decreasescore(r) most

r « 7 with [ removed from
else ifx is labeled -1then

t «— a (random) term im that coverse
with probabilityp,: a random literain
so thatt A m does not cover:
otherwise: a random literal whose
addition tot decreasescore(r) most

r «— r with [ added ta
end if

end while

return the best found so far
end procedure

Algorithm 2 The rule learning algorithmsS'is the training
set, ke the maximal number of rules per rule setthe
number of rule sets per ensemble and rule setisizaadyr
is the noise probability.
procedure LearnEnsemble, &.,.q.., 0, V)
for ¢l = 1topdo
Q. — empty ensemble
for £k = 1to k4, dO
for s=1toodo
rs « SLSearchk)
w — exp(—vi(rs, S)

)
Qe — Qu U {(T57w)}

end for
end for
Normalize the weights ia.; to sum up to one
end for
return{Q1,...,Qp}

end procedure

rules per rule set in advance, we sample a constant num-
ber of rule sets for eachup to a user-specified limi,, ..

Of course, the sampled rule sets differ in their ability to ex-
plain the training set. It makes sense to keep, along with
each rule set, a probability(r;) depending on th&,’s er-

ror on the training set. If the user has information about the
noise behavior of the underlying target distribution, she can
use this information to generate a matching noise model
and generat€) accordingly. If, for example, the noise level
is higher for some parts of the instance spagene would
want to base)(r;) on the misclassified instances at hand:
if a rule set misclassifies only “noisy” instances, a higher
probability is assigned than for a rule set that misclassi-
fies relatively stable instances. As a conservative default
strategy we use @ that assigns a probability that is expo-
nentially decreasing with its empirical error ¢éhto each

Ti-

exp(—ui(ri75))

Q(r;) :== 5 ’
(71 ) EQ(H)#O exp(—l/l(’ri,s))

)

Wheref(ri, S) denotes the empirical error of on the sam-
ple S (cf. section 5), ana specifies the rate of decay. This
corresponds to a white noise model, where the error prob-
ability is constanty := exp(—v/m) across all instances.
Similar models have been studied, e.g., in (Littlestone &
Warmuth, 1994).

The learning algorithm should also be able to handle multi-
class problems directly. Up to now, we only consider the
case of two-class problems. Dealing with multi-class prob-
lems has traditionally been problematic for rule learning
systems. For the sake of simplicity, we employ a sim-
ple one-vs-all scheme here: we legsgnensembles);,
where ensemblé); distinguishes between class lahgl
andY \ {y;}. As the scores can be seen as a measure of
how certain an ensemble is about its prediction (cf. section
5.2), it makes sense to choose that classith the largest
scorec(Q;, x).

5. Bounds for Rule Learning

In the following, we will present a theoretical analysis of
the above algorithm. The goal is to bound its expected pre-
diction error. In the first part, we show how McAllester’'s
PAC-Bayesian theorem can be used to bound the error in
ensemble rule learning. In the second part, we prove that
the PAC-Bayesian bound can be further improved by al-
lowing the learner to abstain from uncertain predictions.

may result in large changes in the rules. In order to avoidlogether, these results are more generally applicable, but
unstable behavior, we now consider learning ensembles dhey serve well the purpose of bridging the gap between
rule sets. Algorithm 2 learns one ensemble per class. Thheory and practice for rule learning.



5.1. The PAC-Bayesian Bound for Rule Learning use this information by selecting B; that assigns high
robabilities to those rule sets. If she does not have any
uch information, she can simply select an uninformative,
flat prior. In the next step she draws a samglef size

m from D. It is now the task of the learning algorithm to
select a distributior); on R; for each class labe);. The
algorithm aims at finding); that minimize the right hand
¥ide of the inequality and thus provides a tight upper bound
on the expected error of rule sets drawn according to

Two-class problems are generally easier to handle thaE
multi-class problems. We therefore wd®racteristic func-
tions y; to split ap-class problem inte 2-class problems:
let Y be a set ofp class labels. Just like;(x), x;(y) is
defined to be +1, ify = y;, and -1 otherwise. To esti-
mate the rule set’s predictive behavior we are especiall
interested in the cases where the clasassigned by the
rule set disagrees with the “true” clagsof an instance
xz. To measure the rate of misclassification, we introducdJsing those@; and the PAC-Bayesian theorem one can
aloss function let (z, y) be a labeled instance drawn ac- construct a voting ensemble of weighted rule sets, and
cording to D, andr; a labeled ruleset. Then thHess bound its generalization error. L& := (Q;,...,Qy).
l(ri, z,y) == 1(ri(z) # xi(y)) is 0, if the prediction agrees Then:
with the “true” classy, and 1 otherwise. Intuitively, is a

0-1 loss for measuring whether the prediction of a rule set o(Qi7) = mPQi[”(x)] )
agrees with an observation drawn fraby when we are ev(Q,z) = argmaxc(Q;,z) ()
only distinguishing between class labgland the remain- ’ Yi€Y "

ing class labels. -
"9 c(Q, x) is thescoreof @ onz andcy (Q, z) denotes the

Theexpected 10s8(r;) := E(a,)~p[l(ri, z,y)] indicates,  voting classifierfor Q. The expected error of the vot-
how often the rule set; disagrees with the “true class” ing classifier is thusgy (Q) := E(m,y)wD[I(cV(Q,x) +

on average. Given a sample of size m, the empiri-  y)]. The following theorem bounds the expected error
cal lossi(r;, S) := L3, ,)esl(ri, z,y) yields the frac-  of the voting classifier for two-class problems, i.6. =
tion of instances inS that are misclassified by;. The  (Qy,Q.). Bounds for multi-class problems can be derived
PAC-Bayesian theorem deals with (prior and posterior)in a similar fashion.

distributions on the spacg&; of y;-labeled rule sets. |If Theorem 2. Fori € {1,2} lety; € Y be class labelspP;

@Q is an arbitrary probability measure di, we can ex- g gistributions over the spacesmpflabeled rule sets;,
tend the notion of a loss to distributions instead of sin-jg; 5 < andQ = (Q1, Q») be as above. Then:

gle rule sets:/(Q,S) = E,~oli(r:,5)] and[(Q) := ]
Er,~oll(r;)]. Furthermore, to compare prior and posterior 'S VQ 1v(Q) < B(Q1, P, m,8) + B(Q2, P2, m, )
distributions, we need the well known Kullback-Leibler di-

vergence, denoted bP(Q||P) := ,.cr(Q(r)In gg:;). Proof. First, observe that fof) = (Q1, Q-):

As a notational shortcut we writé’ S &(S) instead of 1v(0) = Pr c 2) + c ) <0l (5
Prs.p[®(S)] < 1 — § to express thab holds for all but v(Q) = Erba()e@, 2) +x2()e(@22) < 0] 6)

a fractiond of the cases. With this we can state the PAC-Additionally,

Bayesian theorem:
1-2UQ) =1 -2 B [ BIi(x) # xiw)]]

Theorem 1 (PAC-Bayesian, (McAllester, 1999)).Let Qi
y; € Y be a class label, leP be a distribution over the 1 )
space ofy;-labeled rule sets;, let§ > 0, and define: =1-2 E [g[i(ﬁ(ﬂf) —xi())?]] (6)
1
B(Q, P,m,6) := =1-3E [Elri(2)” = 2ri(2)xi(y) + xi(y)°]
. DQ|P)+In} +Inm+2 :1_} 1_9 . 4 1
(Q,8) + \/ S 2( E [Cl*i[n(x)xz(y)}] + )

)

Then, wher&) ranges over all distributions of;: _ %[Xi(y) (Qi, )]
VS VQ 1 < B(Q,P,m,d
@ UQ) = B(@,Pm,0) (6) uses the fact tha{a # b) = 1(a — b)? for a,b €

_ —1,+1}, (7) usesa® = 1 fora € {—1,+1}. It follows
This theorem can be used to upper-bound the expected %bm theorem 1:

ror of an ensemble classifier in the following way: the user .

provides a prior distributio®; on the rule set spacR;. If VS E(y)e@i,x)] =1 —-21(Q;) (8)
she has some information about which rule sets are most p

likely to resemble the “true” target distributian, she can > 1=2B(Qi, Pi,m, 9)



Now, letC = 2 — x1(y)e(Q1, ) — x2(y)c(Q2,7) be a  Unfortunately, it is a bad idea to sample uniformly or ac-

random variable. Sinc€ > 0 for all z,y, Q1, @2, we can  cording toP; from R;, because the bound depends on the

apply Markov's inequality: empirical errorl on the training set. Thus, if the sampled
rule sets have a high error on the training set, the bound

(9)  will be loose. It is therefore essential that we select rule
sets with low empirical error. As stated above, we employ

By definition of C, an SLS algorithm that finds DNFs with low empirical error

in a randomized fashion to achieve this goal.

Ve>0: Pr[C >¢cE[C]] <
D D

M | =

Ve > 0: Pr [x1(y)c(Q1,2) + x2(y)c(Q2, @) < _ o
b 5.2. Improving the Bound Through Abstaining

M | =

2—2e+e Blx1 (1)c(Q1, )] +e Exa(y)e(Q2, )] < Most rule learning systems are designed to assign a class to

any instance that was input for classification. In practice,
and because of (8) though, it is often the case that some instances clearly be-
s long to one class, while other instances are just in between

Ve>0 V°S: %r [X1(1)e(Q1,2) + x2(y)e(Q2, 2) < two classes or particularly susceptible to noise. A classifier

1 that abstains from classification for instances of the latter

2 —2¢(B(Q1, Pr,m,0) + B(Q2, P2, m,d))] < - (10)  kind might feature a much higher predictive accuracy, be-
cause it avoids errors on uncertain predictions. Sometimes,

The theorem follows from (5) by setting abstaining can give important hints to the user, e.g. about
1 the existence of a previously unknown class label.
°= B(Q1, P1,m,d) + B(Qz2, P2,m,6) These considerations lead to a different approach for get-

ting tighter bounds: allowing the classifier to abstain from
a classification for uncertain instances. In our case we can

) _ ) assess the deviation of the votes in an ensemble as a mea-
In order to keep this bound as tight as possible, one would,re of how certain the corresponding prediction is. If all

like to find Q; that have low empirical error on the sample rje sets in an ensemble vote for the same class label, the
S and that differ from the?; only to a small degree. While  ¢|assification is quite certain. If, on the other hand, the
this may be possible theoretically, such a “PAC-Bayesianyyeight of the rule sets that vote fag differs only by a
optimal” algorithm would require calculating the empiri- gma|| margin from the weight of the rule sets that vote for a
cal error of all possible concepts in the underlying concepjitterenty;, the classification can be regarded as uncertain.
class. Of course, this is not practical for our purposes, betpys, it might make sense to abstain from a classification,
cause the space of rule sets is way too large to be evaluatgtihe apsolute value of the margin is lower than a certain
exhaustively. thresholdd > 0. For the two-class setting, the following
We try to keep the computational costs within a reasondefinition gives theabstaining voting classifier;,. Again,

able range by taking two measures: first, we limit the maxthe concept can be easily extended to the multi-class set-
imum size of the rule sets to be considered. This is neceding.

sary anyway, because rule sets of arbitrary size can repre-

O

sent all possible dichotomies. If a flat prior is used and we = _ y1 i e(Qr,2) — (@2, ) > 6
chooseQ only depending on the training set, this is effec- ¢y (Q,z) := § 0 if =0 <¢(Q1,7) — ¢(Qa,2) <0
tively bias-free learning, which is known to be equivalent y2 i c(Q1,2) — ¢(Q2,2) < -0

to rote learning. Thus, we restrict our concept space to the
set of all rule sets with at most,,.., rules per rule set. This The expected error of this abstaining classifier is
bias towards short hypothesis is motivated by the principle

of William of Ockham and — in one form or the other — 15(Q):= E [I[(%(Q,z) #0A(Q,x) #y)]
included in virtually any existing rule learning algorithm. (@y)~D
Second, instead of considering all possible rule sets for a = Pr [xi(y)e(Q1, ) + x2(y)c(Q2, z) < —0].

y)~D
Q,, we sample a small number of rule sets fr@y and set (@.9)

the probability measur€, to zero for all rule sets outside

the sample. In this way, W? have to dea_l with only a rather'I'he following adaption of theorem 2 improves the PAC-
small number of concepts; the calculation«9®);, =) in-

volves only the summation over the few rule sets with non_Bayesmn bound for an ensemigeif the abstaining voting

zer0Q;(r;) and the task of predicting and estimating theclassmer is used instead of the voting classifier.
expected error becomes feasible. Theorem 3. Let theyy,y2, P1, P2, @Q1,Q2, andd be as

(11)



above, let) > 0. Then: Bagged Bagged Rule
SVM PART JRIP PART JRIP Ens.
V[SS VQ l?/(@) S B(Q13P17m75) +1B(Q2,P2,m,5) SVM 16 16 10 11 9
1+ 36 PART 18 16 2 5 7
JRIP 14 9 0 1 4
Proof. The result follows from (11) and by setting Bagged PART 22 28 27 14 14
Bagged JRIP| 19 22 26 6 7
1+ 16 12) RuleLearn | 22 23 24 11 16

c B(Q17P17m75)+B(Q27P27m56)
Table 2. Results: each number identifies the number of data sets,
in (10). O on which the method in the row significantly outperforms the
method in the column.

6. Experiments

Rule Ens.| Consistent Simple

In this section we describe an empirical evaluation of the Data Set |Bound CV|Bound CV |Bound CV
presented rule learning algorithm. The goal of the first breast-w| 30.6 3.4] 43.6 4.8] 15.8 2.3
experiment is to investigate how the presented algorithm | pupa 54.3 30.7 100.0 38.0 84.6 30.7
compares to modern rule learning algorithms. To get re- |credit-a | 57.7 13.9 100.0 39.1 87.6 29.9
sults on learning problems with varying characteristics, we diabetes | 64.1 26.1 99.9 29.9 78.6 26.8
select 34 data sets from the UCI repository (Blake & Merz, glassg2 | 76.8 26.8 91.4 22.1| 63.8 22.]
1998). Since the presented rule learning algorithm works |haberman 68.0 29.3 99.7 38.1 78.2 31.6
only on nominal attributes, we discretize continuous at- |yote 36.5 4.1| 71.2 11.5 442 115
tributes using a frequency-based discretization with ten in-
tervals. If a data set contains unknown values, we simplyp, e 3 Results: the prediction error in percent as estimated by

add a new value “unknown” to the corresponding domainsten runs of tenfold cross validation and the size of the bound for
so that unknown values are treated just like any other valughe rule set ensemble algorithm, the consistent Set Covering Ma-

echine, and the simple Set Covering Machine.

To estimate the predictive accuracy of the algorithms w
averaged over ten runs of tenfold cross-validation. The
pres_ented algorithm was set up to build rule sets with Upclearly outperforms SVM, PART, JRIP, and Bagged JRIP,
to eight rules per rule set, and we set thparameter to and is slightly worse than Bagged PART

twenty rule sets per level. To calculate Q¢r) probabili- '

ties, we chose the “white noise” model described in sectiorfFor the second experiment, the main goal is to investigate
4 with the noise parameter set to 0.9. The SLS algo- the gap between the PAC-Bayesian bound and the true er-
rithm was set up to search for 5000 iterations, wifh,  ror as estimated by tenfold cross-validation and to com-
Dg2, Ps Set to the default values of 0.1, 0.2, and 0.1, re-pare our results with related approaches. Multi-class prob-
spectively. We compare the results for the presented alems require the application of the union bound on the
gorithm with the results of a support vector machine withPAC-Bayesian bounds for theensembles, so the result-
RBF kernel and two state-of-the art rule learning systemsing bound is rather loose. We therefore focus on two-class
PART (Frank & Witten, 1998) is a separate-and-conquerproblems. We apply the presented algorithm with the same
based rule learning algorithm, that avoids over pruning byparameters as above and a flat pridrto a selection of
obtaining rules from partial decision trees. JRIP (an impletwo-class problems taken from the UCI repository (Blake
mention of Cohen’s RIPPER (Cohen, 1995) in the WEKA & Merz, 1998). To the best of our knowledge, there are
workbench (Witten & Frank, 1999)) combines separate-no comparable results on theoretical bounds for rule learn-
and-conquer with incremental reduced error pruning andng systems in the literature. The closest approaches in
an iterated post-processing optimization step. To includehe literature are SLIPPER (Cohen & Singer, 1999), LRI
ensemble-based approaches, we estimated the predicti(@/eiss & Indurkhya, 2000), and the Set Covering Machine
accuracy of twentyfold-bagged versions of the two algo-(Marchand & Shawe-Taylor, 2001; Sokolova et al., 2003;
rithms. The results are given in table 1. Table 2 showdMarchand etal., 2003). SLIPPER and LRI are rule learning
how different methods compare to each other. Each enalgorithms based on ensembles of individual rules instead
try indicates the number of data sets for which the methof rule sets. Since they employ voting schemes, they are
associated with its row is significantly more accurate tharamenable to theoretical analysis and also would be able to
the method associated with its column according to a pairedbstain from predictions. However, standard approaches to
two-sided t-test on a 1% significance level over the runs. Adounding the error applied to SLIPPER and LRI give rather
can be seen, the presented algorithm performs favorably. lbose bounds. Like a rule learning system, the Set Cover-



Bagged Bagged Rule

Data Set SVM  PART JRIP PART JRIP Ens.

anneal 929 972 98.0:0.4 98.2+0.2 98.4+0.2 98.3+0.1
audiology 438 788 72.816 826+06 77.6+1.3 81.5+0.9
autos 62.0 70.7 74221 822+09 823+13 83.4+04
balance-scale | 90.7 773 71.#A#09 851+06 80.9+12 83.6+05
breast-cancer | 70.3  71.0 71814 728+17 742£09 73.8+0.5
breast-w 97.3 943 941405 953+0.2 948+0.3 96.6+0.2
bupa 58.0 583 621409 609+18 59.7+12 69.3£0.9
colic 859 834 84304 851+05 852+04 829+05
credit-a 86.2 859 85404 87.0+05 857+05 86.1+0.6
credit-g 713 70.7 69.660.7 747+06 73.1+06 73.6+0.5
diabetes 72.4 73.4 71.5: 0.4 73.7£ 0.7 72.5+ 0.6 73.9+ 0.9
glass 542 523 64225 652+20 702+18 73.2+1.1
haberman 735 735 71407 70.9+0.7 721+05 70.7+0.4
heart-c 848 809 78A19 830+13 81.1+09 785+0.7
heart-h 833 789 79.415 813+12 81.0+06 79.8+0.6
heart-statlog 841 785 77.613 812+08 81.3+08 77.1+1.2
hypothyroid 96.8 979 979401 98.2+0.1 98.1+0.1 98.1+0.1
ionosphere 90.3 88.0 90.809 90.4+04 91.9+05 91.8+0.3
iris 90.7 920 884115 926+06 90.9+1.3 91.1+0.3
kr-vs-kp 914 991 992200 99.4+0.1 99.4+0.1 97.8+0.1
labor 70.2 877 76428 84.4+20 83.3+12 93.3+1.3
lymph 80.4 791 78.6:£19 853+16 80.1+1.2 84.9+0.7
mushroom 99.9 100.0 100.60.0 100.0+0.0 100.0+0.0 100.0+0.0
primary-tumor | 24.8 40.7 38410 453+11 42.0+08 43.6+0.6
segment 944 942 91810 957+0.2 96.4+0.2 97.2+0.1
sick 97.6 981 97.60.1 98.3+0.1 97.7+40.0 98.1+0.0
sonar 76.9 620 642233 7214+21 704+12 76.2+1.4
soybean 884 918 92.2£0.5 93.6+0.3 93.5+0.3 93.2+0.2
splice 96.1 925 94304 949+0.1 958+0.1 93.8+0.3
tic-tac-toe 76.2 945 97504 99.7+40.2 98.2+0.1 99.2+0.1
vehicle 684 67.0 58810 699+13 70.0+06 71.8+0.7
vote 952 959 95303 96.0+03 958+0.2 959+0.1
waveform-5000| 84.6  73.7 72.6£0.7 80.3+0.3 80.7+0.3 82.0+£0.3
Z0o 733 921 87.&#08 927409 90.7+40.8 95.0+0.9

Table 1. Results: percentage of correct classifications, together with standard deviation.

ing Machine uses disjunctiohsf boolean-valued features ple SCM” is able to derive inconsistent classifiers, but the
as concepts. However, unlike rule learners, it disjunctivelyresults are given for experiments that use only the best pa-
joins data-dependent features such as generalized balls araimeter settings among an exhaustive scan of many values
half-spaces instead of conjunctions of literals. Marchetrd for each data set. Those values are thus much more opti-
al. derive a bound based on a compression scheme, that camistic than our results, which are based on default param-
be compared to the PAC-Bayesian bound. They report emeter values that are fixed for all data sets. Nevertheless, the
pirical and analytical results for a whole range of parametePAC-Bayesian bound is better in five out of seven cases,
settings. In table 3 we reproduce the values for two parand the presented algorithm achieves a lower prediction er-
ticular settings: the “consistent” columns give the resultsror in five out of the seven cases.

for the unparameterized version of the data-dependent quA/

SCM, which induces only consistent classifiers. The “Sim-, e also performed preliminary experiments .W'th ab§ta|n-
ing ensembles of rule sets. To test the validity of this ap-

The Set Covering Machine can induce disjunctions or con-proach empirically, we estimate the prediction error of the
junctions. Since we are dealing with rule sets, we consider thebstaining Bayes algorithm on the Haberman data set using
disjunctive case only. tenfold cross-validation. We used the same parameters as
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