Learning to Learn with the Informative Vector Machine

Neil D. Lawrence

NEIL@DCS.SHEF.AC.UK

Department of Computer Science, University of Sheflield, Regent Court, 211 Portobello Street, Sheffield, S1 4DP,

U.K.
John C. Platt

JPLATTQMICROSOFT.COM

Microsoft Research, Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, U.S.A.

Abstract

This paper describes an efficient method for
learning the parameters of a Gaussian pro-
cess (GP). The parameters are learned from
multiple tasks which are assumed to have
been drawn independently from the same
GP prior. An efficient algorithm is obtained
by extending the informative vector machine
(IVM) algorithm to handle the multi-task
learning case. The multi-task IVM (MT-
IVM) saves computation by greedily selecting
the most informative examples from the sep-
arate tasks. The MT-IVM is also shown to be
more efficient than random sub-sampling on
an artificial data-set and more effective than
the traditional IVM in a speaker dependent
phoneme recognition task.

1. Introduction

Recently, there has been a large amount of interest in
the machine learning community in learning the kernel
(equivalently, the covariance) of a Gaussian Process
(GP), for either regression or classification (Williams,
1998). By learning the kernel from data, the accuracy
of the GP can be improved. Typically, a GP kernel is
parameterised by some vector 8, where regardless of
the value of 0, the covariance will always be valid (a
positive definite Mercer kernel).

Depending on the availability of data, the parameters
0 can be learned one of three different ways:

1. The labelled training set — The same data-set that
is used to train the linear parameters of a GP model
can also be used to estimate the kernel parameters 6.
This is the most common situation. Several different
approaches have been used to estimate the kernel, in-

Appearing in Proceedings of the 215 International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

cluding maximum likelihood estimation and hierarchi-
cal Bayesian learning (Williams, 1998). If the labelled
training set is small, then these methods may not es-
timate the covariance accurately.

2. Unlabelled data — If unlabelled data is available,
then it can be used to define a kernel. Examples of
such work is the Fisher kernel (Jaakkola et al., 1999)
or the work of Seeger (2002), where a generative model
of unlabelled data can be used to create a kernel that
can work well. In the context of GPs, however, it
is unclear whether such a kernel estimates the true
covariance of the GP that the target function is drawn
from.

3. Labelled data from related tasks — Using labelled
data from related tasks is known as “learning to learn”
or “multi-task learning” (Baxter, 1995; Thrun, 1996;
Caruana, 1997). In the context of GPs, we assume
that these related functions are drawn from the same
GP and use the related data to fit the parameters 6.
Minka and Picard (1997) were the first to link multi-
task learning with fitting a GP covariance. If the re-
lated task data is plentiful, we can fit the parameters
with low variance. This paper addresses the multi-task
learning problem.

There are two main issues in multi-task learning with
GPs. The first is computational efficiency: CPU time
as a function of training set size. Computing the gra-
dient of the log-likelihood of the data from M tasks
with respect to 0 requires solving M linear systems,
each with dimension N,,, where N,, is the number
of training points in the mth task. Thus, multi-task
learning with GPs can be computationally daunting.

The second issue is statistical efficiency: accuracy as a
function of training set size. Approximating maximum
likelihood may slow down convergence to the correct
parameter vector. Since it is always possible to speed
up maximum likelihood by throwing away data, any
proposed algorithm exhibit better statistical efficiency
than randomly sub-sampling the data.



This paper proposes the multi-task informative vec-
tor machine (MT-IVM), which is a computationally
efficient algorithm to fit a GP covariance to multiple
tasks. MT-IVM adapts the IVM algorithm (Lawrence
et al., 2003) to the multi-task case. Similar to the
IVM, the MT-IVM selects a subset of data from the
tasks. The data-points are selected by a simple, fast
heuristic: choose the points that minimise the entropy
of the posterior process. This heuristic tends to choose
points that are maximally informative. MT-IVM is
computationally efficient and more accurate than max-
imum likelihood with sub-sampled data. This is the
first multi-task GP algorithm to be tested for both
statistical and computational efficiency.

1.1. Structure of Paper

In order to describe MT-IVM, we first review Gaus-
sian Processes in section 2 and the original IVM in
section 3. In section 4, we extend the IVM to multiple
tasks by mapping the multi-task GP back to a sin-
gle larger GP. Section 5 presents experimental results:
we show that MT-IVM is better than random sub-
sampling for multi-task learning of GPs. Section 5.2
shows that we can get faster training by treating
speaker-independent phoneme recognition as a multi-
task problem (one task per speaker) rather than one
unified task.

2. Gaussian Processes

In this section we briefly review Gaussian processes,
introducing the notation that we will use in the follow-
ing sections. Consider a simple latent variable model
for data where the observations, y = [y .. .yN]T, are
independent from input data, X = [x; ...xx]", given
a set of latent variables, f = [f ... fN]T. The prior
distribution over the latent variables is given by a GP,

p(f|X, 0) =N (07K) )

with covariance function, or ‘kernel’, K which is pa-
rameterised by the vector 8 and evaluated at the points
given in X. This relationship is shown graphically in
Figure 1.

The joint likelihood of the data can be written as

N
p(y,£1X,0) =p(f[X,0) [[p(wnlfn) (1)

n=1

where p (yn|fn) gives the relationship between the la-
tent variable and our observations and is sometimes
referred to as the noise model. For the least squares re-
gression case (see e.g. (Williams & Rasmussen, 1996))

(x) 0
o
@)
()

N
—

Figure 1. The Gaussian Process model drawn graphically.
Nodes are shaded gray to indicate that they are observed
variables, and white to indicate that they require marginal-
isation. A black node indicates that the variable will be op-
timised. We have made use of ‘plate’ notation to indicate
the independence relationship between f and y. This plate
indicates that the nodes within it are repeated N times in
the graph with their edges preserved.

the noise model takes the form of a Gaussian! and
the marginalised likelihood can be computed with-
out approximations. Unfortunately when the noise
model is non-Gaussian this marginalisation is not pos-
sible. One solution to this problem is to approximate
each factor of the noise model, p (y,|f,) with a Gaus-
sian distribution, N (zp|fn, 3, ") with mean z, and
precision 3,. If this is done in a sequential man-
ner through minimisation of a KL divergence the ap-
proach is known as assumed-density filtering (ADF),
see e.g. Csato (2002). Thus we start with the GP prior
qo (f|1X, 0) = p (f|X, 0) and we include the nth factor
of the noise model p; (f) x qo (f) p (yn|zn) to obtain a
posterior distribution. This posterior is then approxi-
mated by minimising the KL divergence between p; (f)
and a Gaussian distribution ¢ (f),

pi (f)
g (f)

A further data-point is then included and the approxi-
mation is repeated. This is continued until all data has
been included. The tractability of the approximation
relies on the normalisation constant for p; (),

df.

KL (p: () |gi (£)) = / b () In

7 — / Pl ) @i1 (£) dE

where
qi (f) = N (f|p;, %)

'We use N (x|, %) to denote a Gaussian distribution
over X with a mean vector pu and covariance matrix .
When dealing one dimensional Gaussians the vectors and
matrices are replaced by scalars.



By differentiating In Z; with respect to p;—1,, (the nth
element of p; ;) we can show that for p (yn|fn) =

N(yn‘fﬂnﬂ;l)
aanz n — Mi—1.n .
o (2)
Oi1n B +Si—1m

Similarly we differentiate the log partition with respect
t0 Gi—1,n, the nth diagonal element of 3;_1, to find

_1y -1 )
Oci—1.m 3 (§i71,n + 4, 1) + 2gl_2n = Yin,
and deﬁning Vin, = —Yin + %g?ﬂ we haVe
_1y -1
Vin = (sicin+8,") . (3)

Using this notation, under the ADF scheme, the fol-
lowing update equations hold,

K = Ki—1 T GinSi—1,n, (4)

Yi=%1— Vinsifl,nSiT_Lna (5)

where s;_1 ,, is the nth row from »;_; ,.

2.1. Classification Noise Model

For classification we consider the probit noise model,

P (Unlfn) = & (Yn (fn +))

where ¢ (-) is the cumulative Gaussian? and y, €
{1, —1},. The partition function is again found by
taking the expectation of p (y,|f,) under the marginal
distribution ¢;_; (f),

Zi = ¢ (ui-1,n)
where ;1 Ci—1n (Bi-1,n +) and ci—1p

Yn (1 4+¢—1,) *. Performing the necessary deriva-
tives to obtain g;, and v;, we have?

Gin = Ci—l,nN (“i—l,n|07 1) [(b (ui—l,n)]_l , (6)

1
2

and

Vin = Gin (Gin + Uim1Ci—1,n) - (7)
In practice we wish to summarise our approximation to
the likelihood in terms of (3, and z,. This relationship
can easily be found by replacing y,, with z, in (2) and
(3) and re-arranging to obtain

Gin + Mq’,—lm, (8)

Vin

Zn =

Vin
n = 9
ﬁ 1- VinSi—1,n ( )
Updates for p;_; — p; and ¥;_; — %, , the parame-
ters of ¢ (f), are then as those given in (4) and (5).

. z 2
2Given by ¢ (2) = \/%7 J7 . exp (—%) dt.
3Care must be taken in computing g;» when u;—1,, has
large magnitude as both ¢ (-)and N (-) become small.

3. The IVM Reduces Computation

The assumed density filtering (ADF) approach out-
lined above assumes that all data-points will be made
use of in determining the model. One problem with
this is that including all N data-points gives the algo-
rithm O (N 3) complexity. Even more of a concern is
that if we wish to find the parameters of the kernel, 6,
by gradient based optimisation of the (log) likelihood,
each gradient evaluation will be O (N?3). It is impor-
tant to find a method for reducing this complexity.
In this section we will review the informative vector
machine (IVM) which aims to find a sparse represen-
tation of the data-set, thereby reducing the computa-
tional cost (Lawrence et al., 2003). Then, in section 4,
we return to the the concept of learning from multi-
ple tasks and show how it can be done efficiently with
Gaussian processes.

3.1. Data-point Selection with the IVM

The informative vector machine approach to greedily
obtaining a sparse representation of the data-set gives
an approximation to the solution in O (dzN ) opera-
tions, where d is the number of data-points included
in the sparse representation. We will denote the set of
these ‘active points’ with I and the set of those which
are not included with J.

The data-points in I are greedily selected using a
simple criterion inspired by information theory: the
change in entropy of the posterior process. For an in-
dividual point, n, as a candidate for the ith inclusion
this entropy change is given by

1
AH, -5 log (1 = VinSi—1,n) , (10)

where ¢;_1, is the nth diagonal element from %, ;.
Other criteria (such as information gain) are also
straightforward to compute.

The idea behind the IVM is to greedily minimise the
entropy of the true posterior through incorporating
data-points that most reduce the entropy in a sequen-
tial manner. We note from (10) that in order to score
each point we need to keep track of ¢;, the diagonal of
3i—1, and vy,. If these can be efficiently computed or
stored then we will have an efficient algorithm.

Note that maintaining ¥;_; in memory would require
O (N?) storage, which is undesirable, so our first quest
is to seek an eflicient representation of the posterior
covariance. From (5) it is clear that X; has a particular
structure, where successive outer products are added
to the original prior covariance ¥y = K to form the



current covariance. This can be represented by
¥, =K-M/M;

where the kth row of M is given by |/Vkn,Sk—1n,
and ny, represents kth included data-point. Naturally,
if we are not storing ¥; 1 , we will not be able to
represent (for instance) s;_i,, directly. However it
can be computed from M,;_; and K.

Si—1,n; = kni - a’ir—l,niMi—l (11)
where k,,, = sgp, is the n;th row of K = ¥ and

a;_1,n,; is the n;th column of M;_;. This computa-
tion will require O ((¢ — 1) N) operations and domi-
nates each point inclusion resulting in an algorithm of
complexity O (d2N ) for d inclusions.

From (4) and (5) it can be seen that the diagonal of
>, Si, can be updated by

Si = Si—1 — Vi n,diag (Sifl,ms;'ILLni) (12)
and the mean output vector can be updated by
i = M1+ GinSi-1n;- (13)

Storage requirements are dominated by M; which at
maximum is an N X d matrix.

The overall algorithm for the IVM is given in Algo-
rithm 1.

Algorithm 1 The standard IVM algorithm.
Require: d a number of active points. For classifica-
tion z = 0 and 3 = 0. For regression substitute ap-
propriate target values. Take ¢o = diag (K), u =0,
J=A{1,....,N}, I ={}, My is an empty matrix.
for i =1tod do
for alln € J do
compute g;, according to (6) (not required for
Gaussian).
compute v;, according to (7) or (3).
compute AHj;, according to (10).
end for
n; = argmax,,c jAH;,.
Update z,, and 3,, using (8) and (9).
Compute g; and p; using (11), (12) and (13).
Append \/Tin, s}, to M;_; to form M.
Add n; to I and remove n; from J.
end for

Optimisation of kernel parameters can now be
achieved through maximisation of the approximation
to the marginal likelihood,

p(y)~ N (z]0,K+B™'),

where B = diag (3). The dependence of the likelihood
on y is indirect and through z and 8. Gradients of
the log-likelihood with respect to kernel parameters, 0
may be computed and used in a non-linear optimiser
such as scaled conjugate gradients to develop an esti-
mate 6.

This completes our review of the IVM, we now describe
how the same principles may be applied when learning
from multiple tasks.

4. Multi-task Learning

In this section we will extend the IVM approach to
handle the situation where we have multiple indepen-
dent tasks. We assume that we are given M training
sets from tasks which are independent given a vector of
parameters 6 and an input matrix X,, (see Figure 2).
We model the target data for each task, y,,, as a GP
so that the probability distribution for the matrix Y,
whose columns are y,,, is

M
p(Y1X,0) = [ p(ymlXn. 0)

m=1

where each p (y,,|X,,0) is a Gaussian process.

o

4 A

x,)
>

o)

Q)

N
— "
M

- /

Figure 2. A graphical model which represents a multi-task
GP.

The entire likelihood can be considered to be a Gaus-
sian process over a vector y which is formed by stack-
ing columns of Y, y = [yT ... yﬂ]T. The covariance
matrix is then

K, 0 0 0
0 Ky, O 0
K =
0 0 0
0 0 0 Ky
and we write
p(ylX,0)=N(0,K). (14)



This establishes the equivalence of the multi-task GP
to a standard GP. Once again we obtain an estimate, 0,
of the parameters by optimising the log-likelihood with
respect to the parameters 8. These gradients require
the inverse of K and, while we can take advantage of
its block diagonal structure to compute this inverse, we
are still faced with inverting N,,, x N,,, matrices, where
N,, is the number of data-points associated with task
m: so we look to the IVM algorithm to sparsify the
GP specified by (14).

It is straightforward to show that the new posterior co-
variance structure after k inclusions, g, (f), will also be
a Gaussian with a block-diagonal covariance matrix,

M
0 (£) = [T & (Ealu™ =) (15)
m=1

Note that k inclusions in total does not mean k in-
clusions for each task. The 4 in (15) represents the
number of inclusions for each task. The value of ¢ will
vary with m, but we prefer to drop this dependence to
avoid further cluttering of our notation. Each block of
the posterior covariance is

m) T ,
Eg7rz) - K, — MZ(‘"L) MErrL),

where the rows of M{"™ are given by uf:‘)sﬁ’_”fn

The means associated with each task are given by

™ = w" gl s (16)

™) can still be achieved through

T) . )

From (16) and (17) it is obvious that the updates of
qgm) (f) are performed independently for each of the
M models. Point selection, however, should be per-
formed across models, allowing the algorithm to select
the most informative point both within and across the

different tasks.

and updates of CE

Q‘Em = CETl) - V.(mi diag (s(m) s(m)

i,n i—1,n; Pi—1n,;

m 1 m m
AHZ.(n ) = —3 log (1 — yi(n )§i(71),n) .
We must also need to maintain an active, 1), and
an inactive, J™) set for each task. The details of the
algorithm are given in Algorithm 2.

The effect of selecting across tasks, rather than select-
ing independently within tasks is shown by a simple
experiment in Figure 3. Here there are three tasks,
each contains 30 data-points sampled from sine waves
with frequency £ and differing offsets. The tasks used

Algorithm 2 The multi-task IVM algorithm.
Require: d the number of active points.
for m = 1toM do
For classification z(™ = 0 and 8™ = 0. For
regression substitute appropriate target values.
Take <™ = diag(K,), p™ = 0, JM =
{1,..., N}, M((]m) is an empty matrix.
end for
for k= 1tod do
for m =1toM do
for all n € J™ do
compute g\ according to (6) (not required
for Gaussian).

compute v\

according to (7) or (3).
compute AH™ according to (10).
end for
{Comment: Select largest reduction in entropy
for each task.}
AH™ = maxy AHL™
nl(cm) = argmax,,c JAHy,.
end for
{Comment: Select the task with the largest en-
tropy reduction.}

my = argmaxmeJAH,g , My =
Update m,,, and Bims) using (8) and (9).

Compute cgm"') and ul(-mk) using (11), (12) and
(13).

(i) G(mx) T 0m) g
Append y/v;,.*" s; 1, to M}’ using (11) to
form M;.

Add n; to I™*) and remove n; from J(™).
end for

different distributions for the input data: in the first
it was sampled from a strongly bimodal distribution;
in the second it was sampled from a zero mean Gaus-
sian with standard deviation of 2 and in the third task
data was sampled uniformly from the range [—15, 15].
An MT-IVM with d = 15 and an RBF kernel of width
1 was trained on the data. The data-points that the
MT-IVM used are circled. Note that all but six of the
points came from the third task. The first and second
task contain less information because the input data
is less widely distributed, thus the MT-IVM algorithm
relies most heavily on the third task. This toy example
illustrates the importance of selecting the data-points
from across the different tasks.

To determine the kernel parameters, we again max-
imise the approximation to the likelihood,

M
p(Y)= [] p(zml0, K + B,

m=1



Task 3

Figure 3. Three different learning tasks sampled from sine
waves. The input distribution for each task is different.
Points used by the MT-IVM are circled. Note that more
points are taken from tasks which give more information
about the function.

5. Results

We show the effectiveness of the MT-IVM on two dif-
ferent tasks. First, in section 5.1, we take a GP with a
covariance function with known parameters. We hide
the parameters from the MT-IVM, then generate a se-
ries of tasks from the GP, feed the training data for
the tasks to the MT-IVM, and measure how quickly
the MT-IVM converges to the true results. The second
test, in section 5.2, uses the MT-IVM as a classifica-
tion algorithm on a small, real data-set for phoneme
recognition. The traditional way to view phoneme
recognition is to gather a data-set from many speak-
ers, throw away the speaker labels, then train a single
speaker-independent model for the phones. Given the
MT-IVM, we can treat speakers as tasks, which are in-
dependent given the GP covariance for the phonemes.
We then test to see if the MT-IVM converges faster
than a speaker-independent GP model trained with
IVM.

5.1. Regression with the Multi-task IVM

The first test generates data from an artificial M-task
GP with a covariance function parameterised by 6

km, (xl(»m), xgn)) = 0 exp (—91E§?)) + 93)_15” + 64

where x\™ is the ith data-point from the mth task,
0i; is the Dirac delta function and

m) _Lom N\ om)  _(m)
Eij 7§(xi —X; ) (xi - X; )

We generate ‘training tasks’ from a Gaussian process
with @ = [1, 1, 100, 0]. For each task: the number
of input dimensions was 4 and N,, = 2000; half the
input vectors, X,,, were sampled independently from
a spherical Gaussian distribution with mean in each
direction of 1 and variances of 0.125; the other half
were sampled from a Gaussian with the same covari-
ance but a mean in each direction of -1; the y,, values
were sampled from a GP parameterised by 6.

To optimise the MT-IVM we initialised 6 =
[10, 10, 10, 10] and selected an active-set. The likeli-
hood of the active-set was then optimised with respect
to the parameters using scaled conjugate gradients un-
til convergence or a maximum of 50 iterations. The
active-set was then reselected using the new estimate
for 6. This process was repeated five times.

We compared the MT-IVM approach with random
sub-sampling of the the data-set. To optimise in this
case we simply maximised the likelihood of the sub-
sampled data using scaled conjugate gradients for a
maximum of 200 iterations.

For the MT-IVM we considered active set* sizes of 400
to 1000 at intervals of 100. For uniform sub-sampling
we took 150 to 600 samples from each task® at intervals
of 50 samples.

The quality of the parameter estimates was measured
using the KL divergence evaluated for a separate set
of test points:

/) es 0
KL (610) = [ p(suanloyin Z¥1% gy

p (ytest\@)) 7

Ten runs were made for each sub-sample or active set
size. Results are presented in Figure 4. In the top
figure, we simultaneously test for both statistical and
computational efficiency by plotting the KL divergence
as a function of CPU time. Note that with about 170
seconds of training time the MT-IVM is already close

4Note that this is the active set across all tasks so we
are using d/M points on average per task.

®In other words 600 to 2400 total samples at intervals
of 200.



KL

0 500 1000 1500 2000 2500
data—points

Figure 4. Plot of KL divergence vs average time (top) and
KL divergence vs data-points used (bottom) for the two
methods. The IVM is represented by circles and a solid
line, sub-sampling is represented by crosses and a dashed
line. The results summarise the ten ‘runs’ with means and
error bars on the KL divergence shown at one standard
deviation.

to a KL divergence of zero, whereas for sub-sampling
even with over 1500 seconds of training time the mean
of the KL divergence is still some distance from zero.
This difference is explained by the statistical efficiency
of the algorithm (bottom of Figure 4) because the MT-
IVM actively selects data-points it achieves far lower
KL divergences with fewer data-points. There is a
small time penalty associated with the active point-
selection, but it is insignificant when compared to its
associated benefits.

5.2. Classification with the Multi-task IVM

In this section we turn to a speech example from
the UCI repository (Blake & Merz, 1998) The data
consists of 15 different speakers saying 11 different

phonemes 6 times each (giving 66 training points for
each speaker). Our aim will be to learn kernel pa-
rameters that are appropriate for classifying the dif-
ferent phonemes. To this end, we will consider that
each speaker is independent given the kernel parame-
ters associated with the phoneme, i.e. we treated each
speaker as a separate task. We used 14 of the speak-
ers to learn the kernel parameters for each phoneme
giving 14 tasks. Model evaluation was then done by
taking one example of each phoneme from the remain-
ing speaker (11 points) and using this data to construct
a new Gaussian process model based on those kernel
parameters. Then we evaluated this model’s perfor-
mance on the remaining 55 points for that speaker.
This mechanism was used for both an MT-IVM model
and an ADF trained GP where points were randomly
sub-sampled.

To demonstrate the utility of the multi-task framework
we also built a IVM based Gaussian process model on
the 14 speakers ignoring which speaker was associated
with each data point (924 training points). The kernel
parameters were optimised for this model and then the
model was evaluated as above.

For enough information to be stored by the kernel
about the phonemes it needs to be ‘parameter rich’.
We therefore used a kernel which could scale each in-
put

k. <Xl(7rl),X§7L)> = fyexp (701E§571/))

T
+05 x™ " Dx{™ + 6515, + 6,

where xgm) is the ith data-point from the mth task,
di; is the Dirac delta function,

T
(m) _ (m) (m) (m) (m)
Eij = (xi —X; ) D (xi - X; ) ,

1
2
D = diag(6s...06+x) and K is number of elements
in each input vector x. This lead to a total of 15
parameters for the kernel.

The results on the speech data are shown in Figure 5.
The convergence of MT-IVM to & 10% error is roughly
10 times faster than the IVM. The MT-IVM takes ad-
vantage of the assumed independence to train much
faster than the regular IVM. While this data-set is
relatively small, the structure of this experiment is im-
portant. One reason for the popularity of the combi-
nation HMM-Gaussian mixture model for modelling in
speech is the ease with which these generative models
can be modified to take account of an individual speak-
ers — this is known as speaker-dependent recognition.
Up until now it has not been clear how to achieve this



time/s

Figure 5. Average average time vs error rate for a MT-IVM
(solid line with circles) and sub-sampled ADF-GP (dashed
line with crosses) whose kernel parameters are optimised
by considering each speaker to be an independent task and
an IVM optimised by considering all points to belong to
the same task (dotted line with pluses).

with discriminative models. The approach we are sug-
gesting may be applied to large vocabulary word recog-
nisers and used in speaker-dependent recognition.

6. Conclusions

In order to efficiently train multi-task Gaussian pro-
cess regression and classification, we have generalised
the informative vector machine to the multi-task case.
We modelled the multi-task training sets as being in-
dependent, given the parameters of the covariance for
all of the tasks. Given this model, the covariance for
the multi-task data is block diagonal, where each block
arises from each task. We then apply the standard
IVM algorithm to find the maximum likelihood esti-
mate of the underlying parameters of the Gaussian
process. The IVM algorithm does not compute the full
covariance matrix for all tasks. Rather, it efficiently
selects points from all of the tasks, by a heuristic that
every point should minimise the entropy of the poste-
rior process.

We have shown that multi-task IVM is more efficient
(from a combined statistical /computational efficiency
standpoint) than random sub-sampling. This effi-
ciency is shown by tests on artificial regression data
and a phoneme recognition data-set. We also showed
that re-expressing a speaker-independent phoneme
task as multiple speaker-dependent tasks makes train-
ing much more efficient.

A software implementation of the MT-IVM is available
from http://www.dcs.shef.ac.uk/"neil/mtivm/.

References

Baxter, J. (1995). Learning internal representations.
Proc. COLT (pp- 311-320). Morgan Kaufmann Pub-
lishers.

Blake, C. L., & Merz, C. J. (1998). UCI repository of
machine learning databases.

Caruana, R. (1997). Multitask learning. Machine
Learning, 28, 41-75.
Csato, L. (2002). Gaussian processes — iterative

sparse approzimations. Doctoral dissertation, Aston
University.

Jaakkola, T. S., Diekhaus, M., & Haussler, D. (1999).
Using the Fisher kernel method to detect remote
protein homologies. 7th Intell. Sys. Mol. Biol., 149—
158.

Lawrence, N. D., Seeger, M., & Herbrich, R. (2003).
Fast sparse Gaussian process methods: The infor-
mative vector machine. Advances in Neural Infor-
mation Processing Systems (pp. 625-632). Cam-
bridge, MA: MIT Press.

Minka, T. P., & Picard, R. W. (1997). Learning how to
learn is learning with point sets. Web. Revised 1999,
available at http://www.stat.cmu.edu/ minka/.

Seeger, M. (2002). Covariance kernels from bayesian
generative models. Advances in Neural Information
Processing Systems (pp. 905-912). Cambridge, MA:
MIT Press.

Thrun, S. (1996). Is learning the n-th thing any easier
than learning the first? In (Touretzky et al., 1996),
640-646.

Touretzky, D. S., Mozer, M. C., & Hasselmo, M. E.
(Eds.). (1996). Advances in neural information pro-
cessing systems, vol. 8. Cambridge, MA: MIT Press.

Williams, C. K. I. (1998). Prediction with Gaussian
processes: From linear regression to linear predic-
tion and beyond. Learning in Graphical Models.
Dordrecht, The Netherlands: Kluwer.

Williams, C. K. I., & Rasmussen, C. E. (1996). Gaus-
sian processes for regression. In (Touretzky et al.,
1996), 514-520.



