
Online and Batch Learning of Pseudo-Metrics

Shai Shalev-Shwartz SHAIS@CS.HUJI.AC.IL

School of Computer Science & Engineering, The Hebrew University

Yoram Singer SINGER@CS.HUJI.AC.IL

School of Computer Science & Engineering, The Hebrew University

Andrew Y. Ng ANG@CS.STANFORD.EDU

Computer Science Department, Stanford University

Abstract

We describe and analyze an online algorithm for
supervised learning of pseudo-metrics. The al-
gorithm receives pairs of instances and predicts
their similarity according to a pseudo-metric.
The pseudo-metrics we use are quadratic forms
parameterized by positive semi-definite matrices.
The core of the algorithm is an update rule that
is based on successive projections onto the posi-
tive semi-definite cone and onto half-space con-
straints imposed by the examples. We describe
an efficient procedure for performing these pro-
jections, derive a worst case mistake bound on
the similarity predictions, and discuss a dual ver-
sion of the algorithm in which it is simple to
incorporate kernel operators. The online algo-
rithm also serves as a building block for deriving
a large-margin batch algorithm. We demonstrate
the merits of the proposed approach by conduct-
ing experiments on MNIST dataset and on docu-
ment filtering.

1. Introduction

Many problems in machine learning and statistics require
the access to a metric over instances. For example, the per-
formance of the nearest neighbor algorithm (Cover & Hart,
1967), multi-dimensional scaling (Cox & Cox, 1994) and
clustering algorithms such as K-means (MacQueen, 1965),
all depend critically on whether the metric they are given
truly reflects the underlying relationships between the in-
put instances. Several recent papers have focused on the
problem of automatically learning a distance function from
examples (Xing et al., 2003; Shental et al., 2002). These
papers have focused on batch learning algorithms. A batch

Appearing in Proceedings of the 21
st International Conference

on Machine Learning, Banff, Canada, 2004. Copyright 2004 by
the authors.

algorithm for learning a distance function is provided with
a predefined set of examples. Each example consists of
two instances and a binary label indicating whether the
two instances are similar or dissimilar. The work of (Xing
et al., 2003; Shental et al., 2002) used various techniques
that are effective in batch settings, but do not have nat-
ural, computationally-efficient online versions. Further-
more, these algorithms did not come with any theoretical
error guarantees. In this paper, we discuss, analyze, and
experiment with an online algorithm for learning pseudo-
metrics. As in a batch setting, we receive pairs of instances
which may be similar or dissimilar. But in contrast to
batch learning, in the online setting we need to extend a
prediction on each pair as it is received. After predicting
whether the current pair of instances is similar, we receive
the correct feedback on the instances’ similarity or dissim-
ilarity. Informally, the goal of the online algorithm is to
minimize the number of prediction errors. Online learning
algorithms enjoy several practical and theoretical advan-
tages: They are often simple to implement; they are typ-
ically both memory and run-time efficient; they often come
with formal guarantees in the form of worst case bounds
on their performance; there exist several methods for con-
verting from online to batch learning, which come with for-
mal guarantees on the batch algorithm obtained through the
conversion. Moreover, there are applications such as text
filtering in which the set of examples is indeed not given all
at once, but instead revealed in a sequential manner while
predictions are requested on-the-fly.

The online algorithm we suggest incrementally learns
a pseudo-metric and a threshold. As in (Xing et al.,
2003), the pseudo-metrics we use are quadratic forms
parametrized by positive semi-definite (PSD) matrices. At
each time step, we get a pair of instances and calculate the
distance between them according to our current pseudo-
metric. We decide that the instances are similar if this dis-
tance is less than the current threshold and otherwise we
say that the instances are dissimilar. After extending our
prediction, we get the true similarity label of the pair of in-



stances and update our pseudo-metric and threshold. Our
update rule is based on the projection operation. Intuitively,
we look for a new pseudo-metric and threshold that on the
one hand will predict correctly the last example we have
just received and on the other hand will be as close as pos-
sible to the previous pseudo-metric and threshold. The idea
of using the projection operation for online algorithms was
first introduced by (Herbster, 2001), and was further de-
veloped by (Crammer et al., 2003). The resulting update
rule enjoys some nice properties. First, the PSD matrix we
learn is a linear combination of rank-one matrices defined
by vectors in the span of the instances. This allows us to de-
velop a dual version of the algorithm that employs kernels.
Further, we show that all the PSD matrices obtained by the
online algorithm are norm bounded. We use this property to
prove an online error bound, and to design a large-margin
batch algorithm based on the online algorithm.

This paper is organized as follows. Sec. 2 formally intro-
duces the problem of online learning of pseudo-metrics and
sets the notation used throughout the paper. In Sec. 3, we
describe our pseudo-metric learning algorithm for the sep-
arable case and show that the resulting online algorithm
can be implicitly implemented using kernel operators. In
Sec. 4, we derive a worst-case loss bound for the online
algorithm. A modification of the online algorithm to the
inseparable case and a corresponding loss bound is briefly
discussed in Sec. 5. In Sec. 6, we describe a simple online
to batch learning conversion, and discuss the generaliza-
tion properties of resulting batch algorithm. Experimental
results are provided in Sec. 7. The experiments apply our
algorithm to the tasks of digit recognition and online doc-
ument filtering. We compare the performance of our algo-
rithm to both other batch similarity learning algorithms and
online algorithms for classification.

2. Problem Setting

Let X denote our feature space. For concreteness we as-
sume that X = R

n. Our goal is to learn a pseudo-metric
over X . A pseudo-metric is a function d : X × X → R,
which needs to satisfy three requirements, (i) d(x,x′) ≥ 0,
(ii) d(x,x′) = d(x′,x), and (iii) d(x1,x2) + d(x2,x3) ≤
d(x1,x3). While the instances may belong to a well de-
fined partition of X into classes, we do not receive direct
supervision in the form of class labels. Instead, we get sim-
ilarity and dissimilarity feedback. Therefore, we assume
that we receive examples of the form z = (x,x′, y) ∈
(X × X × {+1,−1}). Each example is composed of an
instance pair (x,x′) and a label y which equals +1 if x and
x
′ are considered similar and −1 otherwise. As in (Xing

et al., 2003), we restrict ourselves to pseudo-metrics of the
form

dA(x,x′) ≡
√

(x − x′)tA(x − x′) ,

where A � 0 is a symmetric positive semi-definite matrix.
It is easy to verify that if A � 0 then dA is indeed a pseudo-
metric. Furthermore, there exists a matrix W such that

(x − x
′)tA(x − x

′) = ‖Wx − Wx
′‖2

2 .

Therefore, dA(x,x′) is the Euclidean distance between the
image of x and x

′ due to a linear transformation W .

The margin of a sample S, denoted γ, is defined to be the
minimum separation between all pairs of similar and dis-
similar examples. Let (x1,x

′

1,+1) and (x2,x
′

2,−1) be
such a pair. Then, the margin requirement translates to

(dA(x1,x
′

1))
2 ≤ (dA(x2,x

′

2))
2 − γ . (1)

Note that we can scale A and γ by any positive constant
factor without essentially modifying the properties of the
solution (as in the case of many classification problems).
We therefore set γ to be 2 and later on look for a matrix A
which has a small norm. If we get a sample S of m tuples of
the form (x,x′, y) there are, however, O(m2) constraints
of the form described by Eq. (1). Thus, we introduce a
threshold b ∈ R and replace the above constraints with the
following set of constraints,

∀(x,x′, y) : y = +1 ⇒ (d(x,x′))2 ≤ b − 1 ,

∀(x,x′, y) : y = −1 ⇒ (d(x,x′))2 ≥ b + 1 ,

which can be written as a single linear constraint as follows,

y
(

b − (dA(x,x′))2
)

≥ 1 . (2)

Given a set of examples we can now define a constrained
optimization problem to find A. Note that in addition to
the constraint defined in Eq. (2), we also need to impose
the constraint that A must be positive semi-definite (PSD).
Solving this constrained optimization problem can be per-
formed by standard methods, such as interior-point algo-
rithms for solving semi-definite programs. In this paper
we focus instead on a simple and efficient online approach,
and later use well-studied techniques for converting from
online to batch learning algorithms. We thus obtain the
best of both worlds: a loss bound for an efficient online al-
gorithm, and a generalization bound for the resulting batch
algorithm.

In the online setting we observe tuples (xτ ,x′

τ , yτ ) in a se-
quential manner. On time step τ we first observe (xτ ,x′

τ ),
and calculate dA(xτ ,x′

τ ). If the square of dA(xτ ,x′

τ ) is
greater than the threshold b we predict that the pair is dis-
similar. Otherwise, we say that the pair is similar. After ex-
tending the prediction, we receive the true label yτ and may
suffer a loss if there is a discrepancy between our prediction
and yτ . The loss we discuss in this paper is an adaptation
of the hinge loss,

`τ (A, b)
.
= max

{

0 , yτ

(

(dA(xτ ,x′

τ ))2 − b
)

+ 1
}

.



Thus, if we satisfy the inequality in Eq. (2) we suffer no
loss. Otherwise, we pay a cost that grows linearly with the
amount the inequality is violated. The goal of the online
algorithm is to minimize the cumulative loss it suffers. As
in other online algorithms the matrix A and the threshold
b are updated after receiving the feedback yτ . Therefore,
we denote by (Aτ , bτ ) the matrix-threshold pair used for
prediction on round τ .

3. An Online Algorithm

We now present our first algorithm, which assumes that
there exists a matrix A? � 0 and a scalar b? ≥ 1 that
perfectly separates the data. Namely, we assume that
`τ (A?, b?) = 0 for all τ . A modification of the algorithm
for the inseparable case is given in Sec. 5.

The general method we use for deriving our on-line up-
date rule is based on the orthogonal projection operation.
Formally, given a vector x ∈ R

k and a closed convex set
C ⊂ R

k, the orthogonal projection of x onto C is defined
by

PC(x) = argmin
x
′∈C

‖x − x
′‖2

2 .

In words, PC(x) is the vector in C that is closest to x.

For simplicity of presentation, we refer to (A, b) both as

a matrix-scalar pair and as a vector in R
n2

+1 where the
first n2 elements of the vector are the elements of A (listed
column-wise) and the last entry of the vector is b. For each
time step τ , we define the set Cτ ⊂ R

n2
+1 as

Cτ =
{

(A, b) ∈ R
n2

+1 : `τ (A, b) = 0
}

. (3)

Thus, Cτ is the set of all matrix-threshold pairs which attain
zero loss on the example (xτ ,x′

τ , yτ ). Recall that a neces-
sary condition imposed on a matrix A used as a pseudo-
metric is that A � 0. In addition, the threshold must be
at least 1 (otherwise the loss on any similar points will be
non-zero). Thus, we denote by Ca the set of all admissible
matrix-threshold pairs,

Ca = {(A, b) ∈ R
n2

+1 : A � 0, b ≥ 1} .

Equipped with the above definitions, we now describe the
update step of the online algorithm. The update is com-
prised of two projections. First we project the current
matrix-threshold pair (Aτ , bτ ) onto Cτ . Let (Aτ̂ , bτ̂ ) =
PCτ

(Aτ , bτ ) be the resulting matrix-threshold pair. In
words, we attempt to keep (Aτ̂ , bτ̂ ) as close to (Aτ , bτ ) as
possible, while forcing (Aτ̂ , bτ̂ ) to achieve a zero loss on
the most recent example. We then define the new matrix-
threshold pair (Aτ+1, bτ+1) as the projection of (Aτ̂ , bτ̂ )
onto the set Ca, thus ensuring that (Aτ+1, bτ+1) is admis-
sible for deciding whether two instances x,x′ are similar

or dissimilar. In summary, the update rule of our online
algorithm is composed of two successive projections,

1. (Aτ̂ , bτ̂ ) = PCτ
(Aτ , bτ ) ,

2. (Aτ+1, bτ+1) = PCa
(Aτ̂ , bτ̂ ) .

In the following, we show how to efficiently perform these
projections.

3.1. Projecting onto Cτ

Recall that we refer to (A, b) both as a matrix-scalar pair

and as a vector in R
n2

+1. For the simplicity of represen-
tation, we denote by w ∈ R

n2
+1 the vector representation

of (A, b). Analogously, wτ ,wτ̂ ,wτ+1 denote the vectors
corresponding to (Aτ , bτ ), (Aτ̂ , bτ̂ ), (Aτ+1, bτ+1). In ad-

dition, let χτ ∈ R
n2

+1 be the vector corresponding to the
matrix-scalar pair (−yτvτv

t
τ , yτ ), where vτ = xτ − x

′

τ .
Using the above terminology along with simple algebraic
manipulations, we can rewrite the definition of Cτ from
Eq. (3) as Cτ = {w ∈ R

n2
+1 : w · χτ ≥ 1}. It is

easy to verify that the projection of wτ onto Cτ is given by
PCτ

(wτ ) = wτ +ατχτ where ατ = 0 if wτ ·χτ ≥ 1 and
otherwise ατ = (1 − wτ · χτ )/ ‖χτ‖2

2
.

We now use the fact that wτ and χτ are the vec-
tors corresponding to the matrix-scalar pairs (Aτ , bτ ) and
(−yτvτv

t
τ , yτ ). Therefore, we get that,

ατ =
`τ (Aτ , bτ )

‖χτ‖2

2

=
`τ (Aτ , bτ )

‖vτ‖4
2 + 1

,

and the update becomes

Aτ̂ = Aτ − yταtvτv
t
τ , bτ̂ = bτ + αtyτ . (4)

3.2. Projecting onto Ca

We now describe an efficient method for projecting
(Aτ̂ , bτ̂ ) onto Ca. First note that if (Aτ+1, bτ+1) =
PCa

(Aτ̂ , bτ̂ ) then Aτ+1 is the projection of Aτ̂ onto the
set of all PSD matrices and bτ+1 is the projection of bτ̂

onto the set {b ∈ R : b ≥ 1}. The projection of bτ̂ onto the
above set is max{1, bτ̂}. It remains to show how to project
Aτ̂ onto the set of all PSD matrices.

We start with the case yτ = −1. In this case Aτ̂ = Aτ +
αtvτv

t
τ where αt ≥ 0 and hence Aτ̂ � 0. Therefore,

the projection of Aτ̂ onto the set of the PSD matrices is
Aτ̂ itself. However, if yτ = 1 Aτ̂ might not be positive
semi-definite. Since Aτ̂ is symmetric, we can rewrite Aτ̂

as Aτ̂ =
∑n

i=1
λiuiu

t
i, where λi is the i’th eigenvalue of

Aτ̂ and ui is its corresponding eigenvector. Without loss
of generality, we assume that λ1 ≥ . . . ≥ λn and that
the eigenvectors {u1, . . . ,un} form an orthonormal basis
of R

n. The matrix Aτ+1 is the projection of Aτ̂ onto the



Initialize: Set A1 = 0 ; b1 ∈ R

For τ = 1, 2, . . .

Get a pair of instances: (xτ ,x′
τ ) ∈ R

n × R
n

Predict: xτ ,x′
τ are similar iff (dAτ

(xτ ,x′
τ ))2 ≤ bτ

Get the true target yτ ∈ {+1,−1}
Suffer loss: `τ (Aτ , bτ ) =

max
{

0 , yτ

(

(dAτ
(xτ ,x′

τ ))2 − bτ

)

+ 1
}

If (`τ (Aτ , bτ ) > 0):
Set vτ = (xτ − x

′
τ )

Set ατ = `τ (Aτ ,bτ )

1+‖vτ‖4

Define Âτ = Aτ − yτατvτv
t
τ ; bτ̂ = bτ + yτατ

If (yτ = 1),
Update: bτ+1 = bτ̂

Find (λn,un) - the minimal eigenvalue of Aτ̂ and
its corresponding eigenvector

If (λn < 0),
Update: Aτ+1 = Aτ̂ − λnunu

t
n

Else
Update: Aτ+1 = Aτ̂

Else [yτ = −1]

Update: Aτ+1 = Aτ̂ ; bτ̂ = max{bτ̂ , 1}

Else [`τ (Aτ , bτ ) = 0]

Update: Aτ+1 = Aτ ; bτ+1 = bτ

Figure 1. The pseudo-metric online learning algorithm (POLA).

positive semi-definite cone. Given the set of eigenvectors
and eigenvalues of Aτ̂ , the projection yields that Aτ+1 can
be written as,

Aτ+1 =
∑

i:λi>0

λiuiu
t
i .

(See for instance Golub & Van Loan, 1989.) In addition,
from the (eigenvalue) Interlacing Theorem we have that
Aτ̂ has at most a single negative eigenvalue (cf. Wilkin-
son, 1965, pp. 94-97 and Golub and Van Loan, 1989, page
412). Therefore, we get that Aτ+1 = Aτ̂ −λnunu

t
n. Here,

λn and un can be calculated efficiently using the Lanc-
zos method (see, e.g., Golub and Van Loan, 1989). We
name the resulting algorithm POLA as an abbreviation for
Pseudo-metric Online Learning Algorithm. The pseudo-
code of POLA is given in Fig. 1.

3.3. Kernel-based Implementation

The pseudo-metrics we have used so far take the form

(dA(x,x′))2 = (x − x
′)tA(x − x

′) = ‖Wx − Wx
′‖2

2 ,

where W =
√

A exists since A � 0. Therefore, dA(x,x′)
is the Euclidean distance between the image of x and x

′

due to a linear transformation W . In real-world applica-
tions, similarity and dissimilarity constraints over instances
might not be satisfied by such simple distance functions. A

common preprocessing strategy is to use a non-linear map-
ping function φ : X → F that maps the data into some high
dimensional feature space F and then learn in F (Vapnik,
1998). Since F is high-dimensional, we need an efficient
way to access the data in F . In this section we present a
dual version of the algorithm in Fig. 1, where interface to
the data is limited to inner products. Thus, if we have a
kernel function K : X × X → R that efficiently computes
the inner products in F , K(x,x′) = φ(x) · φ(x′), we can
efficiently learn a pseudo-metric over F .

To derive a dual version for the online algorithm, we first
show that for any time τ , the matrix Aτ can be written as

Aτ =

m
∑

i=1

βirir
t
i , (5)

where m ≤ 2τ and all the vectors ri are in the span of
the vectors {v1 = (φ(x1) − φ(x′

1)), . . . ,vτ = (φ(xτ ) −
φ(x′

τ ))}, namely,

ri =

τ
∑

j=1

ρj,i(φ(xj) − φ(x′

j)) =

τ
∑

j=1

ρj,ivj .

The above representation of Aτ enables us to efficiently
calculate the distance between a new pair of instances using
the kernel function, because using Eq. (5), we have:

(dA(xτ+1,x
′

τ+1))
2 = vτ+1

t Aτ vτ+1

=
m

∑

i=1

βi (ri · vτ+1)
2

=

m
∑

i=1

βi





τ
∑

j=1

ρj,ivj · vτ+1





2

.

In addition, we have that vj · vτ+1 = K(xj ,xτ+1) −
K(xj ,x

′

τ+1) − K(x′

j ,xτ+1) + K(x′

j ,x
′

τ+1).

We now use an inductive argument to show that Aτ can in-
deed be written as in Eq. (5). The initial matrix A1 is the
zero matrix and clearly fits the form of Eq. (5). Assume
that Aτ is of the form in Eq. (5). The first step of the online
update rule is to define Aτ̂ = Aτ − yτατvτv

t
τ . Thus, Aτ̂

can also be written as in Eq. (5). If the resulting matrix Aτ̂

is positive semi-definite we do not have to do anything. If
it does have a (single) negative eigenvalue, we find (λ,u),
the minimal eigenvalue of Aτ̂ and its corresponding eigen-
vector. We then set Aτ+1 = Aτ̂ − λuu

t. It remains to
show that u is also in the span of {v1, . . . ,vτ}. Since u is
an eigenvector of Aτ̂ we have that Aτ̂u = λu. Using the
inductive assumption, we rewrite Aτ̂ as in Eq. (5) and get
that, (

∑m

i=1
βirir

t
i)u = λu, which yields,

u =

m
∑

i=1

(

βi(ri · u)

λ

)

ri . (6)



Therefore, u is in the subspace spanned by {r1, . . . , rm}
and thus it is also in the span of {v1, . . . ,vm}, which con-
cludes the derivation.

In the rest of this section we explain how to find, via inner-
products, the minimal eigenvalue, λ, and its corresponding
eigenvector, u, of the matrix Aτ̂ . Let Q ∈ R

n×d be a
matrix whose columns form an orthonormal basis for the
subspace spanned by {v1, . . . ,vm} and let qi denote the
i’th column of Q. From Eq. (6) we get that each eigenvec-
tor u of Aτ̂ can be written as a linear combination of the
columns of Q and thus there exists a vector κ ∈ R

d such
that u = Qκ. Since u is an eigenvector of Aτ̂ , we get that

Aτ̂u = λu =⇒ Aτ̂Qκ = λQκ .

Multiplying both sides by Qt we get that QtAτ̂Qκ = λκ.
The reverse direction is also correct. Namely, if κ is an
eigenvector of QtAτ̂Q then u is an eigenvector of Aτ̂ with
the same eigenvalue. We have thus shown that u is an
eigenvector of Aτ̂ with an eigenvalue λ iff u = Qκ where
κ is an eigenvector of QtAτ̂Q with the same eigenvalue λ.
The matrix QtAQ can be computed using inner-products
since

(QtAQ)k,j =

m
∑

i=1

βi(qk · ri)(qj · ri) .

Finally note that {q1, . . . ,qd} can be found implicitly us-
ing the kernel Gram-Schmidt procedure. In summary, we
have shown that all the steps of the online algorithm in
Fig. 1 can be implemented via a kernel function.

4. Analysis

The following theorem provides a loss bound for the algo-
rithm in Fig. 1. After proving the theorem we discuss a few
of its implications.

Theorem 1 Let (x1,x
′

1, y1), . . . , (xτ ,x′

τ , yτ ), . . . be a se-
quence of examples and let R be an upper bound such that
∀τ : R ≥ ‖xτ − x

′

τ‖4
2 + 1. Assume that there exist A? � 0

and b? ≥ 1 for which ∀τ ≥ 1, `τ (A?, b?) = 0 . Then the
following bound holds for any T ≥ 1

T
∑

τ=1

(`τ (Aτ , bτ ))
2 ≤ R

(

‖A?‖2

F + (b? − b1)
2
)

. (7)

The proof of the theorem is based on the following lemma

Lemma 2 Let w ∈ R
n be any vector and let C ⊂ R

n be a
closed convex set. Then for any w

? ∈ C we have

‖w − w
?‖2

2
−‖PC(w) − w

?‖2

2
≥ ‖w − PC(w)‖2

2
. (8)

For a proof see for instance (Censor & Zenios, 1997),
Thm. 2.4.1.

Proof of Theorem 1:
For simplicity, we use the definitions of w,wτ ,wτ+1,wτ̂

and χτ from Sec. 3.1. We also denote by w
? ∈ R

n2
+1 the

vector corresponding to the matrix-scalar pair (A?, b?).

Define ∆τ = ‖wτ − w
?‖2

2
− ‖wτ+1 − w

?‖2

2
. We prove

the theorem by bounding
∑T

τ=1
∆τ from above and below.

First note that
∑T

τ=1
∆τ is a telescopic sum and therefore

T
∑

τ=1

∆τ = ‖w1 − w
?‖2

2
− ‖wT+1 − w

?‖2

2

≤ ‖w1 − w
?‖2

2
. (9)

This provides an upper bound on
∑

τ ∆τ . In the following
we prove the lower bound ∆τ ≥ (`τ (Aτ , bτ ))

2
/R. We

can subtract and add the term ‖wτ̂ − w
?‖2

2
from ∆τ to get

∆τ =
(

‖wτ − w
?‖2

2
− ‖wτ̂ − w

?‖2

2

)

+
(

‖wτ̂ − w
?‖2

2
− ‖wτ+1 − w

?‖2

2

)

.

Recall that wτ̂ is the projection of wτ onto Cτ and that
wτ+1 is the projection of wτ̂ onto Ca. By assumption,
w

? ∈ Ca and w
? ∈ Cτ . Therefore, we get from Lemma 2

that

∆τ ≥ ‖wτ̂ − wτ‖2

2
+ ‖wτ+1 − wτ̂‖2

2

≥ ‖wτ̂ − wτ‖2

2
. (10)

We now use the fact that wτ̂ = wτ + ατχτ where ατ =
`τ (Aτ , bτ )/ ‖χτ‖2

2
to get that

‖wτ̂ − wτ‖2

2
=

(`τ (Aτ , bτ ))
2

‖χτ‖2

2

≥ (`τ (Aτ , bτ ))
2

R
, (11)

where the last inequality is due to the fact that ‖χτ‖2

2
=

‖xτ − x
′

τ‖4
2 + 1 ≤ R. Combining Eq. (11) with Eq. (10)

we get ∆τ ≥ (`τ (Aτ , bτ ))
2
/R. Comparing the above

lower bound with the upper bound in Eq. (9) we get
∑T

τ=1
(`τ (Aτ , bτ ))

2 ≤ R ‖w? − w1‖2

2
, which gives the

bound in Eq. (7) since ‖w? − w1‖2

2
= ‖A?‖2

F +(b?−b1)
2.

Note that the loss bound of Thm. 1 does not depend on the
dimension of the instance space. Therefore, the bound does
not change if we employ kernels which map the instances to
high dimensional spaces. The sole difference in the bound
when using kernels is that the norm of A? and the norm of
the instances are assumed to be small in the mapped space.
Note also that we make a similarity prediction mistake iff
yτ

(

bτ − (dAτ
(xτ ,x′

τ ))2
)

≤ 0. Thus, if on round τ the

predicted similarity is incorrect, then (`τ (Aτ , bτ ))
2 ≥ 1.

Therefore, the number of prediction mistakes cannot ex-

ceed R
(

‖A?‖2

F + (b? − b1)
2

)

. Finally we would like to



note that while Thm. 1 provides a loss bound on the sum
of squares of hinge losses, it is possible to derive a bound
which is a mere sum of losses. The proof however is more
complicated, and is omitted due to lack of space.

5. A Modification for the Inseparable Case

So far, we have assumed that there exists a pseudo-metric
that perfectly matches the similarity and dissimilarity re-
lations between instances. In this section, we relax this
assumption and describe a modification for the algorithm
in Fig. 1 for the inseparable case. Since there is no per-
fect pseudo-metric that explains the data even from hind-
sight, we do not expect our online algorithm to attain a fixed
amount of loss. Instead, we measure the loss of the online
algorithm relative to the loss of any other fixed pseudo-
metric parametrized by (A?, b?). The algorithm employs a
relaxation parameter, denoted by γ > 0. The only modifi-
cation to the algorithm in Fig. 1 is to define

ατ =
`τ (Aτ , bτ )

‖xτ − x′
τ‖4 + 1 + γ

. (12)

It is possible to derive a loss bound for POLA with the
above modification relative to the loss of any other fixed
pseudo-metric using the same techniques as in (Crammer
et al., 2003). The full details are omitted due to the lack of
space.

6. Using POLA in Batch Settings

We have focused thus far on online algorithms. However,
in many machine learning tasks the entire training data is
given to the learning algorithm in advance. Such settings
are typically referred to as batch learning. In batch learn-
ing the goal is to find an hypothesis which exhibits small
empirical error or loss on the training data and generalizes
well by obtaining similar low loss on unseen examples. In
this section we build upon the fact that we have devised
an online learning algorithm with a loss bound on its per-
formance. Specifically, we use POLA as a building block
to devise a batch procedure which returns a pseudo-metric
that is guaranteed to generalize well.

There are various techniques to convert from online to
batch learning which come with some formal guarantees,
quite a few can be used in our setting. We present here
one of the simplest conversion techniques. The conversion
procedure uses a convergence parameter, denoted β. It in-
vokes POLA multiple times so long as there exists an ex-
ample in the training set whose hinge loss exceeds β. If
no such example exists the procedure stops and returns the
final matrix obtained by POLA. The loss bound of Sec. 3

guarantees that at most dR
(

‖A?‖2

F + (b? − b1)
2

)

/β2e in-

vocations of POLA will be required. By construction, the

Figure 2. Results of dimensionality reduction using distance
learning. Top: noisy images of the digits ”2” and ”5” (left) re-
construction of the images using PCA (middle) and reconstruc-
tion using POLA (right). Bottom: A corresponding color-coded
representation of the distances between each pair of images.

loss of the final pseudo-metric on any example from the
training set is at most β. Furthermore, combining the in-
equality of Eq. (9) with the fact that ∆τ is non-negative
we obtain Lemma 3 below (see also Crammer et al., 2003).
This lemma assures that the norm of the result is bounded.

Lemma 3 Under the same conditions of Thm. 1, the fol-
lowing bound holds for any τ ≥ 1

‖Aτ‖2

F + (bτ − 1)2 ≤ 4
(

‖A?‖2

F + (b?)2
)

.

Combining the bound on the norm with the fact that its em-
pirical loss on the training set is small implies that the re-
sulting pseudo-metric has good generalization properties.
That is, assuming that the training set and the test set are
i.i.d samples from the same source then with high probabil-
ity the loss on the test set is also small. The formal deriva-
tion uses standard learning theoretic tools and is omitted
due to the lack of space.

7. Experimental Results

In this section we present experimental results with syn-
thetic and natural data that demonstrate different merits of
POLA. In the first experiment we created two synthetic im-
ages of the digits ”5” and ”2”. Each image is composed
of 12 × 12 pixels. We then created 64 noisy versions of
the two original images by adding biased noise as follows.
We defined two noise patterns: the first pattern was gener-
ated by adding a zero mean Gaussian noise to all the odd
columns of the digit image; the second pattern was gener-
ated in a similar manner by adding noise to the odd rows.
The variance of the noise was set such that the signal to
noise ratio is 1 (0dB SNR). The noisy images are depicted
on the top left part of Fig. 2. The noise degraded the orig-
inal images up to the point where it is almost impossible
to recognize whether the original digit is ”2” or ”5”. The



0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

kNN error

P
O

LA
 e

rr
or

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

FDA error

P
O

LA
 e

rr
or

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

RCA error

P
O

LA
 e

rr
or

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

RCA error

P
O

LA
 e

rr
or

Figure 3. Top and middle rows: scatter plots of error rates for all
pairs of digits from the MNIST dataset. Top Left: POLA vs. Eu-
clidean distance. Top Right: POLA vs FDA. Middle Left: POLA
vs. RCA without PCA as a preprocessing step. Middle Right:
POLA vs. RCA. Bottom row: the digits 0 and 8 after dimension-
ality reduction using PCA (left) and POLA (right).

plot on the bottom left of Fig. 2 is a color coded represen-
tation of the distance between each pair of original noisy
images. It is also clear that the distances are rather random
and do not reflect the identity of the underlying prototypes.
We next performed principal component analysis (PCA) on
the images and reconstructed the images using the largest
eigenvector. The corresponding reconstructed images are
shown on the middle of the top row of Fig. 2. The distances
between each two reconstructed images are given on the
middle of the bottom row. While some of the images be-
come more intelligible, it is still not possible in most cases
to reveal whether an image represents the digit ”2” or ”5”.
Similarly, the corresponding distances do not clearly show
the underlying two-class structure. Last, we applied POLA
to all pairs of noisy images, and reconstructed each image
using the largest eigenvector of the learned matrix A. The
reconstructed images and the distances are depicted on the
right hand side of Fig. 2. Most, if not all, of the recon-
structed images look intelligible and we can easily reveal
the original digit prototype for each image. Indeed, the dis-
tances matrix depicted on the right exhibits a clear block
structure corresponding to the partition of the data into two
classes. This experiment demonstrates the power of super-
vised learning of pseudo-metrics for extracting relevant in-
formation.

Our next set of experiments compares the performance

of the k Nearest Neighbor (kNN) classifier with different
(pseudo) metrics on the MNIST dataset. MNIST contains
images of the 10 digits each of which is represented by
28 × 28 pixels. We randomly picked 10, 000 examples
from the training set and used all the 10, 000 examples of
the test set. Next,

(

10

2

)

= 45 binary classification prob-
lems were generated by comparing all pairs of digits. In
the first experiment we compared the performance of kNN
using the Euclidean distance to its performance when using
a pseudo-metric obtained by running POLA on the training
set. To train POLA we randomly chose 1, 000 pairs of in-
stances and used the last hypothesis generated by POLA
for evaluation on the test set (see Sec. 6). A comparison of
the error on all 45 binary classification problems is given
on the top left scatter plot of Fig. 3. Each point in the plot
corresponds to a binary classification problem. The x-axis
designates the error of kNN with Euclidean distance while
the y-axis is the error of kNN using POLA’s pseudo-metric.
It is clear that using the learned pseudo-metric greatly re-
duces the error rate. In fact, the error when using POLA as
a pre-processing step is lower than the vanilla kNN in all of
the 45 binary problems. Next, we compared the RCA algo-
rithm for learning distances (Shental et al., 2002) to POLA.
RCA follows the same learning setting as POLA in a batch
mode. We compared the performance of kNN using a dis-
tance function learned by RCA to its performance using a
pseudo-metric learned by POLA. RCA uses PCA as a pre-
processing step in order to reduce dimensionality. We thus
applied PCA independently to each binary problem and re-
duced the dimension of each 282 image to a 40 dimensional
vector. This value of the dimension was chosen by exper-
imentation on the test set. The results, comparing POLA
with RCA, are given on the middle right plot of Fig. 3.
POLA outperforms RCA on all but one of the 45 binary
problems. We also applied RCA without the dimensional-
ity reduction step. The results are given on the middle left
plot of Fig. 3. Here, the results of RCA are much worse
and POLA outperforms RCA on all of the 45 binary prob-
lems. The fact that POLA does not require dimensionality
reduction is in accordance with our formal analysis. In-
deed, the loss bound of Thm. 1 depends on the Frobenius
norm of A? and does not depend on the actual dimension
of the instances.

We also compared POLA to Fisher Discriminant Analy-
sis (FDA) (Duda et al., 2001). FDA can be viewed as a
dimensionality reduction method in the presence of super-
vision. The simplest form of FDA for binary classification
problems projects the instances onto a single dimension.
Thus, to make a fair comparison with FDA, we projected
the data of each binary problem onto the largest eigenvec-
tor of the matrix found by POLA. We then compared the
performance of kNN using the projected data obtained by
POLA and FDA. The results are depicted on top right part



5 10 15 20 25

5

10

15

20

25

P
O

LA
 e

rr
or

Perceptron error
5 10 15 20 25

5

10

15

20

25

P
O

LA
 e

rr
or

PAUM error
10 20 30 40 50 60

10

20

30

40

50

60

P
O

LA
 e

rr
or

1NN error

Figure 4. A comparison of the error of various online algorithms
for document filtering in the dataset Reuters-21578.

of Fig. 3. Here again kNN with POLA clearly outperforms
kNN with FDA on all of the problems.

In the final experiment with the MNIST dataset we ran-
domly selected 100 images corresponding to the digits ”0”
and ”8”. We then projected each image onto the two largest
eigenvectors obtained by PCA and the two largest eigen-
vectors of the matrix learned by POLA. The two projec-
tions are shown in the bottom row of Fig. 3 The projected
points using the eigenvectors obtained by POLA generated
two perfectly separable clusters each of which corresponds
to a different digit. In contrast the analogous clusters when
using PCA are interleaved. This demonstrates the potential
power of POLA for dimensionality reduction.

We also compared POLA with other online algorithms on
the problem of document filtering. We used the Reuters-
21578 dataset. This dataset contains about 10, 000 docu-
ments. Each document in the corpus is labeled by zero or
more topics from a predefined set. We represented the doc-
uments using the standard vector-space model with length-
normalized tfidf after selecting 500 words (Singhal et al.,
1996). Of the entire set of topics we chose 13 topics to
use in our experiments. The topics were chosen such that
the number of relevant documents is much smaller than the
number of irrelevant documents for the topic. (The ratio
between the number of relevant and irrelevant documents
was in the range [0.1, 0.01]). We then evaluated POLA
and various online algorithms on the task of online docu-
ment filtering as follows. On each time step, we calculated
the distance between a new instance to all of the relevant
documents observed thus far. If the distance to the closest
relevant document was less than the current threshold we
predicted that the document is relevant. Otherwise, we pre-
dicted that it is irrelevant. To evaluate the performance of
the algorithms we calculated both the average number of
false positives (relevant) and the average number of false
negatives (irrelevant). We then took the average of these
two errors. The end results is an equalized error estimate
that does not depend on the density of relevant document.
We compared the results of POLA to the results obtained
by the Perceptron algorithm (Rosenblatt, 1958), the PAUM
algorithm (Li et al., 2002) (a variant of the Perceptron),
and a simple 1NN classifier that uses on each round the
documents observed so far. The results are given in Fig. 4.
As can be seen from the scatter plot in the right, POLA

clearly outperforms the simple 1NN algorithm. However,
the performance of PAUM and the standard Perceptron al-
gorithm are often comparable to POLA. Since the PAUM
algorithm depends on parameters that drastically effect its
performance, it is possible that finer tuning of these param-
eters will improve its performance.

Acknowledgments Thanks to G. Elidan, M. Fink, E. Egozi,
and M. Shalev for discussion and comments. The work of A.N.
was supported in part by the Department of the Interior/DARPA
under contract number NBCHD030010. The work of Y.S. and
S.S. was supported by EU PASCAL Network Of Excellence.

References
Censor, Y., & Zenios, S. (1997). Parallel optimization: Theory,

algorithms, and applications. Oxford Press, NY, USA.

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classifica-
tion. IEEE Transactions in Information Theory, IT-13, 21–27.

Cox, T., & Cox, M. (1994). Multidimensional scaling. Chapman
and Hall, London.

Crammer, K., Dekel, O., Shalev-Shwartz, S., & Singer, Y. (2003).
Online passive aggressive algorithms. Advances in Neural In-
formation Processing Systems 16.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classifi-
cation. Wiley. 2 edition.

Golub, G., & Loan, C. V. (1989). Matrix computations. John
Hopkins University Press.

Herbster, M. (2001). Learning additive models online with fast
evaluating kernels. Proc. of the 14th Annual Conf. on Compu-
tational Learning Theory.

Li, Y., Zaragoza, H., He, R., ShaweTaylor, J., & Kandola, J.
(2002). The perceptron algorithm with uneven margins. Proc.
of the 19th International Conf. on Machine Learning.

MacQueen, J. (1965). On convergence of k-means and partitions
with minimum average variance. Ann. Math. Statist.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for
information storage and organization in the brain. Psychologi-
cal Review, 65, 386–407. (Reprinted in Neurocomputing (MIT
Press, 1988).).

Shental, N., Hertz, T., Weinshall, D., & Pavel, M. (2002). Adjust-
ment Learning and Relevant Component Analysis. 7th Euro.
conf. of Comp. Vision (ECCV).

Singhal, A., Buckley, C., & Mitra, M. (1996). Pivoted document
length normalization. R & D in Information Retrieval.

Vapnik, V. N. (1998). Statistical learning theory. Wiley.

Wilkinson, J. (1965). The algebric eigenvalue problem. Claderon
Press, Oxford.

Xing, E., Ng, A.Y., Jordan, M., & Russell, S. (2003). Dis-
tance metric learning, with application to clustering with side-
information. Advances in Neural Information Processing Sys-
tems 15.


