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Abstract

The majority of the existing algorithms for
learning decision trees are greedy—a tree is
induced top-down, making locally optimal
decisions at each node. In most cases, how-
ever, the constructed tree is not globally op-
timal. Furthermore, the greedy algorithms
require a fixed amount of time and are not
able to generate a better tree if additional
time is available. To overcome this problem,
we present two lookahead-based algorithms
for anytime induction of decision trees, thus
allowing tradeoff between tree quality and
learning time. The first one is depth-k looka-
head, where a larger time allocation permits
larger k. The second algorithm uses a novel
strategy for evaluating candidate splits; a
stochastic version of ID3 is repeatedly in-
voked to estimate the size of the tree in which
each split results, and the one that minimizes
the expected size is preferred. Experimen-
tal results indicate that for several hard con-
cepts, our proposed approach exhibits good
anytime behavior and yields significantly bet-
ter decision trees when more time is available.

1. Introduction

Assume that a medical center has decided to acquire a
classification system for cancer diagnosis. Few seconds
after supplying the system with thousands of previous
cases, a decision tree is produced. During the coming
months, or even years, the same induced decision tree
will be used to predict whether patients have or do
not have the disease. Obviously, the medical center
is willing to wait much longer for obtaining the most
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accurate decision tree available. However, most of the
existing algorithms for induction of decision trees do
not allow such a tradeoff: they cannot make use of
additional time in order to generate better decision
trees.

Despite the recent progress in developing advanced in-
duction algorithms, such as SVM (Burges, 1998), deci-
sion trees are still considered attractive for many real-
life applications where classifier comprehensibility is
important. The majority of existing methods for de-
cision tree induction, such as CART (Breiman et al.,
1984), ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993),
use local heuristics in attempt to produce small trees,
which, by the Occam’s Razor principle (Blumer et al.,
1987), should have better predictive power. In most
cases, these methods do not result in globally optimal
trees. The possibility of constructing optimal trees
has been theoretically examined by several researchers.
Hyafil and Rivest (1976) showed that the problem of
constructing from decision tables, decision trees that
are optimal with respect to the expected classification
cost, is NP-Complete. Murphy and McCraw (1991)
showed that for most cases, the construction of a stor-
age optimal decision tree is an NP-complete problem.

In many applications that deal with hard problems,
we are ready to allocate much more resources than
required by simple greedy algorithms, but still can-
not afford using algorithms of exponential complexity.
One of the commonly suggested approaches to han-
dle such cases, is using anytime algorithms (Boddy &
Dean, 1994) that can trade quality for time. Quinlan
(1993) recognized the need for this type of algorithm
for decision tree learning: “What is wanted is a re-
source constrained algorithm that will do the best it
can within a specified computational budget...”.

In this paper, we aim to fulfil this requirement by
presenting lookahead-based anytime algorithms for
constructing decision trees. Lookahead search is
a well-known technique for improving greedy algo-



rithms (Sarkar et al., 1994). When applied to decision
tree induction, lookahead attempts to predict the prof-
itability of a split at a node by estimating its effect on
deeper decedents of the node. One of the main disad-
vantages of the greedy strategy, is the irreversibility of
the damage caused by a wrong decision: once an at-
tribute was chosen to split on, there is no provision for
backtracking and choosing another attribute instead.
Lookahead search attempts to predict and avoid such
non-contributive splits during the process of induction,
before the final decision at each node is taken. For
simple learning tasks, such as induction of conjunctive
concepts, greedy methods perform quite well, and no
lookahead is needed. However, for more difficult con-
cepts such as XOR, the greedy approach is likely to
fail. The main challenge we face in this work is to
make use of extra resources to induce better decision
trees for such hard concepts.

In this work, we restrict the search space to trees con-
sistent with the training set. Note that while prun-
ing techniques (Breiman et al., 1984; Quinlan, 1993)
also attempt to obtain small decision trees, their goals
and their search space are different from ours. The
main goal of pruning algorithms is to avoid overfitting
the data, mainly in the presence of noise. The trees
produced by pruning algorithms are not necessarily
consistent and are restricted to those attainable from
the “greedy” trees by a sequence of pruning and graft-
ing operations. Therefore, in many cases, pruning is
unable to recover from wrong decisions. In addition,
the anytime behavior of pruning algorithms is limited:
once all non-contributive subtrees are removed, the en-
hancing process is terminated and the constructed tree
can no longer be improved.

2. Anytime Induction of Decision Trees

In this section we present two anytime algorithms for
decision tree induction. There are two main classes of
anytime algorithms namely, contract algorithms and
interruptible algorithms (Russell & Zilberstein, 1991).
A Contract algorithm is one that gets its resource al-
location as a parameter. An Interruptible algorithm
is one whose resource allocation is not given in ad-
vance and thus must be prepared to be interrupted
and return a solution at any moment. In this work
we are mainly interested in contract algorithms since
we view their assumption as the most natural for in-
duction tasks. Nevertheless, Russell and Zilberstein
(1991) showed that any given contract algorithm can
be converted to an interruptible one with a small con-
stant penalty.

The two algorithms described in this section are based

Procedure TDIDT(E, A)

If E=0
Return Leaf(nil)

If Jc such that Ve € E Class(e) = ¢
Return Leaf(c)

a — CHOOSE-ATTRIBUTE(A, E)

V «— domain(a)

Foreach v; €¢ V
E,—{ecE|ale) =v;}

Return Node(a, {{(v;,S;) |[i=1...]V[})

Figure 1. Procedure for top-down induction of decision
trees. E stands for the set of examples and A stands for
the set of attributes.

on top-down induction of decision trees (TDIDT). Un-
der this framework, an attribute is chosen to partition
the entire dataset into subsets, each of which is used
to recursively build a subtree. Figure 1 lists the basic
algorithm for TDIDT. The proposed algorithms dif-
fer in the way they select an attribute for splitting a
node. The first, called ID3-k, generalizes ID3 by look-
ing ahead to depth k. The second, our novel algorithm,
uses a stochastic version of ID3 to perform lookahead.

2.1. ID3-k

Let FE be a set of examples at a tree node ¢t. Let Pg(c;)
be the probability of an example in E to belong to
class ¢;. We can calculate the entropy at ¢ by using
Shannon’s information measure:

entropy(E) = I(Pg(c1), ..., Prlcn)).

When an attribute a with values {v,...,v,,} is used
as the test attribute in a tree node, it partitions F
into {E1,..., E,} where each E; is a subset of E that
contains only the examples for which the value of the
attribute a is v;. The new entropy is the weighted
average of the entropies for each subset:

entropy-1(E, a) = Z % - entropy (F;).
i=1

Thus, the expected information gain for a is given by:
gain-1(FE, a) = entropy(FE) — entropy-1(E, a).

The suffix “1”of entropy-1 indicates that the effect of
using the attribute was tested one level below the cur-
rent node. We can extend this definition to allow mea-
suring the entropy at any depth k below the current
node. The recursive definition minimizes the & — 1



Procedure ENTROPY-K(FE, A, a, k)
Ifk=0
Return I(Pg(c1),...,Pr(cn))
V «— domain(a)
Foreach v; € V
E;, —{e€ E|ale) =v;}
Foreach o' € A
A — A—-{d}
hi(a') < ENTROPY-K(E;, A',a', k — 1))

Return Zl‘;‘l ‘@” mingea (hi(a’))

Procedure GAIN-K(E, A, a, k)
Return I(Pg(c1),...,Pr(en))—
ENTROPY-K(E, A4, a, k)

Figure 2. Procedures for computing entropy-k and gain-k.

entropy for each child and computes their weighted
average. Figure 2 describes an algorithm for comput-
ing entropy-k and its associated gain-k. Note that the
gain computed by ID3 is equivalent to gain-k for &k = 1.
We refer to this lookahead-based variation of ID3 as
ID3-k. At each tree node, ID3-k chooses to split on
the attribute that maximizes gain-k. In ID3, if two at-
tributes yield the same decrease in entropy, we choose
one randomly. In ID3-k we do the same only if both at-
tributes were explored to the same depth. If, however,
one of the two attributes has an associated shallower
lookahead tree, we obviously prefer it over the other.

The contract time allocated to ID3-k is determined by
the k parameter.! Despite its ability to exploit addi-
tional resources when available, the anytime behavior
of ID3-k is problematic. First, the run time of ID3-k
grows exponentially as k increases. As a result, the
gap between the points of time at which the resulted
tree can potentially improve gets wider, limiting the
adjustability of the algorithm. Another problem with
this approach is that it is quite possible that looking
ahead to depth k is not sufficient to determine the use-
fulness of an attribute. To illustrate this problem, let
us consider the n-XOR problem, where the concept
is defined by ai(x) @ ... @ an(x). ID3-k with k£ < n
will not be able to realize the utility of the attributes
ai,...,a,. However, when looking ahead to depth n
the optimal solution can be found.

2.2. Lookahead by Stochastic ID3

The goal of our induction process is to find a small
tree consistent with the examples. ID3 uses informa-

!The mapping from time to the appropriate k can be
estimated, for example, from experience.

Procedure SID3-CHOOSE-ATTRIBUTE(E, A)
Foreach a € A
p(a) « gain-1(E, a)
If Ja such that entropy-1(E,a) =0
a* « Choose attribute at random from
{a € A| entropy-1(F,a) = 0}
Else
a* «— Choose attribute at random from A;
for each attribute a, the probability
of selecting it is proportional to p (a)
Return a*

Figure 3. Attribute selection in SID3.

tion gain as a heuristic to estimate which attribute will
yield a small tree. ID3-k extends this notion and tests
the effect of a split further down the tree. Exhaustive
lookahead will obviously lead to the smallest tree but
its computational costs are prohibitively high. One
way to reduce the costs is invoking shallower looka-
head. Another way is performing a full lookahead but
exploring only the most promising attribute at each
level, i.e., using ID3 itself as the tree size estimator.

Given an attribute a, we partition the set of exam-
ples according to the different values a can take and
call ID3 for each subset. Each such call results in a
subtree. Summing up the size of each subtree gives
an estimation of the total tree size in case a is cho-
sen to split on. Since ID3 does not necessarily return
the smallest tree, this heuristic might over-estimate
but never under-estimates the optimal tree size. One
problem with the above algorithm is that it is not a
contract algorithm—it has a fixed execution time and
cannot improve the solution quality using additional
resources. To overcome this shortcoming and to pro-
duce a better estimate of the tree size, instead of call-
ing ID3, we call Stochastic-ID3 several times.

Stochastic-ID3 (SID3) is a TDIDT algorithm that we
have designed to allow sampling the space of “good”
trees produced by greedy algorithms. Instead of choos-
ing the attribute that maximizes the information gain,
the splitting attribute is drawn randomly with a like-
lihood that is proportional to the attribute’s informa-
tion gain.2 However, if there are attributes that de-
crease the entropy to zero then one of them is picked
randomly. The attribute selection procedure of the
algorithm is listed in Figure 3. Since SID3 is not a de-
terministic algorithm, different runs of it might return
different trees of different sizes.

We make sure that attributes with gain of zero will
have a positive probability to be selected.



Procedure LSID3-CHOOSE-ATTRIBUTE(E, A, 1)
If r=0
Return ID3-CHOOSE-ATTRIBUTE(E, A)
Foreach a € A
Foreach v; € domain(a)
E, —{e€ E|ale) =v;}
min; «— o0
Repeat r times
min; < min (min;, SID3(E;, A — {a}))
total, — ZLd:olmain(a)l min;
Return a for which total, is minimal

Figure 4. Attribute selection in LSID3.

In Lookahead-by-Stochastic-ID3 (LSID3) each candi-
date split is evaluated by summing up the estimated
size of each subtree. For each subtree there are sev-
eral estimations, and since each estimation is an up-
per bound, the minimal one is considered. LSID3 is
a contract algorithm parameterized by r, the number
of times SID3 is called for each candidate. We define
LSID3 with » = 0 to be ID3. Figure 4 formalizes the
choice of splitting attributes as made by LSID3.

The run-time of LSID3 grows linearly with r. We ex-
pect that increasing r will improve the classifier qual-
ity due to the better sampling. For example, con-
sider the expected behavior of LSID3 on the concept
a1(z) @ az(x) @ as(z). Let A = {a1,a2,a3,a4} be the
set of binary attributes and E the set of examples.
Assume that entropy-1(E,a) = 1 for a # a4 while
entropy-1(E,a4) < 1. LSID3 with » = 0, which is
equivalent to ID3, prefers to split on the irrelevant
attribute a4. LSID3 with » > 1 evaluates each at-
tribute a by calling SID3 to estimate the size of the
trees rooted at a. The attribute with the smallest es-
timation is selected. For a4 this estimation must be 2%
since all possible trees rooted at a4 are of this size. The
only way that a4 will be mistakenly selected by LSID3
is that the estimation for each of the other 3 attributes
will be also 24. This can happen only if SID3, when in-
voked to estimate the size of the trees rooted at a # a4
will select a4 for a’s both decedents.® The probability
of such event is low, and decreases with the increase
in 7. Therefore, calling LSID3 with higher values of r
will increase the likelihood of finding the right tree.

3. Experiments

A variety of experiments were conducted to test the
performance and behavior of both ID3-k and LSID3.

31t is easy to see that as cannot be selected at lower
levels.

The first set of experiments compares ID3, ID3-k with
k = 2 and LSID3 with r = 5, in terms of generaliza-
tion accuracy and size of the induced trees, measured
by the number of leaves. We also show results for C4.5
with its default parameters except of using information
gain rather than gain ratio. We use 12 well-known
benchmark datasets from the UCI Machine Learning
repository (Blake & Merz, 1998), additionally to the
following relatively hard-concept datasets that were re-
ferred to in previous Machine Learning literature:

1. Multiplexer: The multiplexer task was used by
several researchers for evaluating classifiers (e.g.,
Quinlan 1993). An instance is a series of bits of
length a 4 2%, where a is a positive integer. The
first a bits represent an index into the remaining
bits, and the label of the instance is the value of
the indexed bit. In our experiments we considered
the 20-Multiplexer problem in which ¢ = 4. The
dataset contains 500 randomly drawn instances.

2. Boolean XOR: Parity-like functions are known
to be problematic for many learning algorithms.
However, they naturally arise in real-world data,
such as the Drosophila Survival concept (Page &
Ray, 2003). We used two XOR based datasets.
The first is the 5-XOR problem with additional 5
irrelevant attributes. The second dataset, named
Multiplex-XOR, is defined over 11 binary at-
tributes. The concept is a composition of two
XOR terms, where the first attribute determines
which one of them should be considered. The
other 10 attributes are used to form the XOR
terms. The size of each term is drawn randomly
between 2 and 5. Both datasets contain 200 ran-
domly drawn examples.

3. Numeric XOR: A XOR based numeric dataset
that has been previously used to evaluate learning
algorithms (e.g., Baram et al. 2003). Each exam-
ple consists of values for x and y coordinates. The
example is labelled 1 if the product of x and y is
positive, and —1 otherwise. We generalized this
domain for three dimensions and added an irrel-
evant variable to make the concept harder. The
dataset contains randomly drawn 200 examples.

4. Shapes-Connectedness: This dataset is based on
the connectedness example Minsky and Papert
(1969) gave to show the practical limitations of
the perceptron. Four binary attributes represent
the sides of the shape, to which we added three ir-
relevant attributes for obtaining a harder concept.
The dataset contains all 27 possible assignments.



Table 1. The size of the induced trees for ID3, C4.5, ID3-k and LSID3 on various datasets. The numbers represent the
average and standard deviation over the individual runs. The 5% column lists the average difference between LSID3 and
ID3 while the 6 column states whether LSID3 is significantly better or worse than ID3 based on t-test with p = 0.95.

The last two columns show the same for LSID3 vs. C4.5.

DATASET 1D3 C4.5 ID3-k LSID3 LSID3 vs. ID3 LSID3 vs. C4.5
(k=2) (r=25) Dirr S1G67? Dirr S1G67
AUTOS-MAKE 53.7 +£4.0 36.6 £2.1 56.7 £1.9 36.8 +1.8 -16.9 +4.2 v 0.2 £2.8 ~
AUTOS-SYMBOLLING 46.6 +1.8 31.8 £1.3 47.1 +1.9 26.7 £1.9 -19.9 £2.2 v -5.1 £2.5 v
BALANCE SCALE 354.1 £6.9 33.7 £4.5 350.5 +£7.3 347.5 +6.6 -6.6 +5.3 v 313.9 £8.1 X
BREAST CANCER 130.4 +£5.2 11.5 £3.2 124.4 +5.1 99.7 +4.3 -30.8 £5.9 VA 88.2 £4.9 X
CONNECT4 18534 +£150 3384 +65 16166 +97 14622 +299 -3912 +406 VA 11238 +303 X
IRrIS 8.5 £1.0 4.7 £0.6 9.1 £0.9 7.6 £0.7 -0.9 0.7 Va 3.0 £0.7 X
MONKs-1 70.0 £24.2  28.2 +2.4 27.0 £0.0 27.0 £0.0 -43.0 £24.2 v -1.2 £2.4 4
MONKS-2 278.7 +£6.8 3.7 £10.0  265.2 £6.6 256.6 +6.2 -22.2 £7.2 v 252.9 +12.2 X
MONKS-3 37.8 £3.4 12.8 £1.0 38.4 £3.7 36.1 £3.0 -1.7 £1.4 v 23.3 £3.0 X
SOLAR FLARE 69.8 £3.5 1.1 +0.4 66.5 £3.2 59.7 £3.0 -10.1 3.1 V4 58.6 £3.0 X
Tic-Tac-ToE 188.5 £15.3  82.5 £7.5 176.6 £8.6 151.2 £4.9 -37.3 £15.3 4 68.7 £9.3 X
WINE 7.9 +£1.0 5.3 £0.8 7.4 +1.1 6.3 +£0.7 -1.6 £1.1 v 1.0 £1.2 X
5-XOR 91.7 £7.7 22.6 £5.4 78.5 £10.5 32.2 £1.8 -59.4 £7.7 v 9.7 £5.8 X
3-D XOR 43.6 £5.2 26.1 £6.1 17.3 £8.2 9.3 +£1.0 -34.3 £5.3 v -16.9 +6.2 4
20-MULTIPLEXER 168.9 +£11.4  82.0 £7.3 45.5 +£28.0 43.4 £19.5  -125.6 £21.0 v -38.7 £18.8 4
MurTiPLEX-XOR 89.9 £6.1 22.1 +4.4 72.7 £9.5 50.6 +4.9 -39.2 £7.2 v 28.5 £7.0 X
SHAPES 18.7 £5.8 8.5 £1.0 9.6 £0.5 9.0 £0.2 -9.7 £5.8 v 0.5 £1.0 X

Following the recommendations of Bouckaert (2003),
10 runs of 10-fold cross-validation experiment were
conducted for each dataset, and the reported results
are averaged over the 100 individual results.* Table 1
compares the size of the trees induced by the four al-
gorithms. Among the three algorithms that force con-
sistency with the training set, the results indicate that
for all datasets, the average tree size is smallest when
the trees are induced by LSID3. All the improvements
in comparison to ID3 were found by t-test to be sig-
nificant (p = 0.95). ID3-k is better than ID3 for most
of the datasets, but not all of them. By allowing both
pre and post pruning, C4.5 produces smaller trees than
LSID3 in most cases. However, these trees are not nec-
essarily consistent with the data.

Reducing the tree size is usually beneficial only if the
associated accuracy is not reduced. Table 2 shows the
generalization accuracy of the trees produced by the
four algorithms. LSID3 significantly outperforms ID3
for 13 out of the 17 datasets. For the other 4 datasets
the t-test values indicate that the algorithms are not
significantly different. ID3-k is better than ID3 on
some datasets. In comparison to LSID3, ID3-k per-
formed much worse for several datasets. When exam-
ining both the accuracy and size of the induced trees,
for most datasets, the decrease in the size of the trees
induced by LSID3 is accompanied by an increase in
the predictive power. This phenomenon is consistent

4Except of the Connect4 dataset, for which only one
run of 10-fold CV was conducted due to its enormous size.

with the principle of Occam’s Razor.

For the majority of the datasets, LSID3 produces clas-
sifiers of higher accuracy than C4.5. For the more dif-
ficult concepts, the advantage of LSID3 is substantial.
However, for some datasets, such as Breast Cancer and
Monks-3, C4.5 produces trees that are both smaller
and more accurate. These results confirm our expec-
tations: the problems addressed by LSID3 and C4.5
are different. While LSID3 allows using more time
for better learning of hard concepts, C4.5 attempts to
simplify the induced trees to avoid the problem of over-
fitting the data. To exemplify the above let us consider
two of the Monks datasets. In the Monks-2 problem all
6 attributes are interdependent and thus greedy strate-
gies fail and pruning does not help and even hurts. In
the case of the Monks-3 problem, that is considered
relatively easy to learn but contains 5% noise, LSID3
does not improve ID3 while C4.5 produces a tree of
higher accuracy that is more than twice smaller.

To test the anytime behavior of the LSID3 and ID3-k
algorithms, we invoked LSID3 and ID3-k with differ-
ent values of r and k. Figure 5 shows the average
results over 10 runs of 10-fold cross validation exper-
iment obtained for the Multiplex-XOR dataset. The
X axis represents the run time in seconds.® ID3, that
is a constant time algorithm, finishes in 0.003 second
and does not improve with time. Since ID3-k with
k =1 and LSID3 with r = 0 are defined to be identi-

5The algorithms were implemented in C++, compiled
by gcec and run on Macintosh G5 2.0 GHz.



Table 2. Classification accuracy for ID3, C4.5, ID3-k and LSID3 on various datasets. The numbers represent the average
and standard deviation over the individual runs. The 5" column lists the average difference between LSID3 and ID3
while the 6 column states whether LSID3 is significantly better or worse than ID3 based on t-test with p = 0.95. The

last two columns show the same for LSID3 vs. C4.5.

DATASET 1D3 C4.5 ID3-k LSID3 LSID3 vs. ID3 LSID3 vs. C4.5
(k=2) (r=2>5) DiIFF S1G67? Dirr S1G6?
AUTOS-MAKE 78.9 £9.8 71.0 £11.4 7.7 £8.7 80.9 +9.8 2.0 £9.7 v 9.9 £11.8 Vv
AUTOS-SYMBOLLING ~ 83.0 £9.2 76.6 +£10.6 81.9 +9.2 83.7 +£8.4 0.7 £9.4 ~ 7.1 £10.0 Vv
BALANCE SCALE 68.7 +5.2 64.1 +5.3 68.6 +4.8 70.2 £5.3 1.6 +4.8 v 6.1 £4.9 Vv
BREAST CANCER 67.1 £8.7 72.7 £9.5 65.1 £8.4 67.0 £9.3 -0.2 £8.2 ~ -5.7 £9.6 X
CONNECT4 75.5 £0.5 78.2 £0.5 78.0 +£0.7 78.5 +£0.5 3.0 £0.5 v 0.4 +0.5 ~
IrIs 93.0 +6.4 93.9 £5.9 93.1 £6.7 94.4 +6.4 1.4 +4.4 VA 0.5 +4.0 ~
MONKS-1 98.1 £2.9 98.9 +2.4 100.0 +0.0 100.0 0.0 1.9 £2.9 v 1.1 £2.4 Vv
MONKS-2 69.7 £5.5 65.2 +£5.7 70.6 +£5.9 76.6 +£5.0 6.9 £5.4 v 11.4 £7.3 v
MONKS-3 97.0 +£2.1 98.9 +1.4 96.9 +2.1 96.9 +2.2 -0.1 £0.7 ~ -2.0 £1.8 X
SOLAR FLARE 84.1 £6.1 88.9 £5.0 85.4 £6.2 84.9 +6.4 0.8 +3.4 v -4.0 £4.6 X
Tic-Tac-ToE 85.5 £3.7 84.7 £4.3 84.5 £3.4 87.7 £3.2 2.2 £4.7 4 3.1 £5.2 V4
WINE 92.7 £7.1 93.1 £7.2 91.4 +6.7 93.0 £5.1 0.3 +£74 ~ -0.1 7.7 ~
5-XOR 54.4 £11.9  53.4 +£11.7 56.8 +15.0 99.9 +0.7 45.5 +£11.8 4 46.5 +11.7 4
3-D XOR 55.4 £13.2  59.3 £15.9 87.3 +£13.8 96.6 +4.3 41.2 +13.1 v 37.3 £15.9 Vv
20-MULTIPLEXER 63.3 +6.9 62.5 £7.0 96.5 +8.7 98.1 +5.0 34.8 +£8.4 v 35.5 +8.3 4
MurTIPLEX-XOR 50.8 £11.7  52.3 £12.4 57.9 +13.8 74.8 £10.6  24.0 £15.0 4 22.5 +£15.7 Vv
SHAPES 96.0 +£5.8 94.8 £9.2 100.0 +0.0 100.0 +0.0 4.0 £5.8 v 5.2 +£9.2 v

cal to ID3, the point at which ID3 yields a result is also
the starting point of the proposed anytime algorithms.
The average run time of C4.5 is 0.004 second.

We can see that for LSID3 and ID3-k both tree size
and accuracy improve with time. This improvement
is larger at the beginning and diminishes over time.
The anytime behavior of LSID3 is better in compari-
son to ID3-k. For ID3-k, the gaps in time between the
points grow exponentially, although successive values
of k were used. As a result, any extra time budget
that falls into one of these gaps cannot be exploited.
For example, ID3-k is unable to make use of addi-
tional time that is longer than 0.15 second (k = 3) but
shorter than 1.2 second (k = 4). For LSID3, the dif-
ference in the run-time for any 2 successive values of r
is almost the same. Except of a small period of time,
ID3-k is dominated by LSID3. This implies that when
additional time is available LSID3 should be preferred
over ID3-k for the task of learning this concept.

Figure 6 shows the performance of both algorithms
when applied on the Tic-tac-toe dataset. In this case,
the average run time of ID3 is 0.004 second, while
C4.5 finished in 0.008 second. LSID3 dominates ID3-k
at any point of time, both in terms of accuracy and
size. ID3-k is clearly not well-behaved in this case.
In addition to the problem of large gaps between suc-
cessive possible time allocations mentioned above, a
decrease in the accuracy and increase in the size of the
tree is observed at k = 3. Similar cases of pathology
caused by limited-depth lookahead have been reported

by Murthy and Salzberg (1995).

4. Related Work

While, to our knowledge, no other work tried specifi-
cally to design anytime algorithm for decision tree in-
duction, there are several related works that need to
be discussed here. Kononenko and Kovacic (1992) ap-
plied stochastic search methods, such as stochastic hill
climbing and simulated annealing for learning decision
rules from examples: rules are randomly generated and
iteratively improved until a local maxima is reached.

Lookahead techniques have been applied to decision
tree induction by several researchers. The reported
results vary from lookahead produces better trees (Nor-
ton, 1989; Ragavan & Rendell, 1993; Dong & Kothari,
2001) to lookahead does not help and can hurt (Murthy
& Salzberg, 1995). One problem with these works is
their use of a fixed low depth lookahead, therefore, dis-
qualifying them from serving as anytime algorithms.

The boosting method (Schapire, 1999), which itera-
tively refines the constructed classifier by increasing
the weight of misclassified instances, can be viewed as
an anytime algorithm. However, unlike the problem
we face in this work, the classifier constructed by the
boosting algorithm consists of an ensemble of decision
trees rather than a single one.

Page and Ray (2003) presented Skewing as an alterna-
tive to lookahead for addressing problematic concepts
such as parity functions. At each node, the algorithm
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Figure 6. Average results over 10 runs of 10-fold cross validation experiment on the Tic-tac-toe dataset.

skews the set of examples and produces several ver-
sions of it, each with different weights to the instances.
The attribute that exceeds a pre-set gain threshold for
the greatest number of weightings is chosen to split
on. Skewing is currently limited to nominal attributes.
Moreover, the method can become harmful when the
training set is small. While not presented and studied
as an anytime algorithm, the skewing method can be
viewed as a contract algorithm parameterized by the
number of weightings. We intend to implement such
version and compare its anytime behavior to LSID3.

Several researchers (Murphy & Pazzani, 1994; Webb,
1996) doubt the usefulness of Occam’s Razor for de-
cision tree induction. In our experiments, we never
found a case where the decrease in the size of trees
induced by LSID3 leads to a significant deterioration
in accuracy. In many cases, when the tree was sig-
nificantly smaller, the accuracy was also significantly
higher. We believe that the different findings about the
utility of Occam’s Razor is due to the different type of
concepts tested and the different algorithms used. We

handled more difficult concepts, such as parity, and
used more sophisticated lookahead algorithms that al-
lowed us to find trees unobtainable by other methods.

5. Conclusions

In this work, we presented and empirically evaluated
two lookahead-based algorithms for anytime induction
of decision trees, namely ID3-k and LSID3. Existing
greedy algorithms for learning decision trees require
a fixed small amount of time. For example, for 16
out of the 17 datasets used in our experiments, ID3
finished in less than 0.1 second. We showed that for
several real-world and synthetic datasets, both LSID3
and ID3-k can make use of higher budget of time. In
most cases, when LSID3 was allocated few minutes, it
produced trees of smaller size and of higher accuracy.
The usage of more time is shown to be worthwhile
when the concepts are hard and involve interdepen-
dencies between the attributes. In these cases, most
of the existing greedy methods fail. Moreover, meth-
ods that attempt to simplify the trees by pruning do



not help and even hurt. An open question that we
intend to tackle in future work is how our lookahead-
based anytime algorithms perform when implemented
on the top of C4.5. This expands the search space to
trees that do not perfectly fit the training data, and
thus allows handling noisy training sets as well.

When we examined the anytime behavior of LSID3
and ID3-k, we found that LSID3 has a better anytime
behavior. The gap between the points of time at which
ID3-k makes use of additional time grows rapidly with
k, the depth of the lookahead. This limits the flexibil-
ity of ID3-k to trade between time and quality. In the
case of LSID3, which is parameterized by the number
of times SID3 is invoked for each candidate, the gap is
almost constant. Another problem with ID3-k is that
in some cases lookahead to depth k is insufficient to
correctly predict the utility of an attribute.

The major contribution of this paper is the LSID3 al-
gorithm which enables deep lookahead using stochastic
search. The algorithm exhibits good anytime behavior
and serves as a contract algorithm for producing bet-
ter decision trees with additional resource allocation.
This algorithm is only a first step in this direction.
We are currently in the process of designing and im-
plementing many variations of it, including algorithms
that combine ID3-k and LSID3.
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