
Robust Feature Induction for Support Vector Machines

Rong Jin RONGJIN@CSE.MSU.EDU
Department of Computer Science and Engineering, Michigan State University, East Lansing, MI48824

Huan Liu HLIU@ASU.EDU
Department of Computer Science and Engineering, Arizona State University, Tempe, AZ85287-8809

Abstract
The goal of feature induction is to
automatically create nonlinear combinations of
existing features as additional input features to
improve classification accuracy. Typically,
nonlinear features are introduced into a
support vector machine (SVM) through a
nonlinear kernel function. One disadvantage of
such an approach is that the feature space
induced by a kernel function is usually of high
dimension and therefore will substantially
increase the chance of over-fitting the training
data. Another disadvantage is that nonlinear
features are induced implicitly and therefore
are difficult for people to understand which
induced features are critical to the
classification performance. In this paper, we
propose a boosting-style algorithm that can
explicitly induces important nonlinear features
for SVMs. We present empirical studies with
discussion to show that this approach is
effective in improving classification accuracy
for SVMs. The comparison with an SVM
model using nonlinear kernels also indicates
that this approach is effective and robust,
particularly when the number of training data
is small.

1. Introduction

For the last couple of years, support vector machines
(SVMs) have been successfully applied to many
applications, such as text classification (Joachims,
2001), image classification (Teytaud & Sarrut, 2001),
and face recognition (Phillips, 1998). Compared to
other learning machines, SVMs have two advantages:
1) controlling model complexity through a
regularization term, and 2) inducing nonlinear features

—————
 Appearing in Proceedings of the 21st International Conference on
Machine Learning, Banff, Canada, 2004. Copyright 2004 by the
authors.

through a nonlinear kernel function. The first advantage
makes SVMs more robust to noises and less likely to
over-fit the training data. The second advantage
increases the expressive power of SVMs and makes
SVMs suitable for complicated classification tasks.
Many empirical studies have shown that appropriate
choice of nonlinear kernels can significantly improve
the classification accuracy (Teytaud & Sarrut, 2001).
However, there are also some shortcomings of using
kernel-induced features for an SVM model:

1) Non-sparse weights. The feature space induced by a
nonlinear kernel function is usually of large
dimensionality and could be infinite in some cases.
When the data can be separated with a few nonlinear
features, a kernel-induced feature scheme may have to
assign non-zero weights to many training examples in
order to concentrate on those important induced
features. This can result in sparseness in the induced
feature space that can lead to a non-sparse weight
distribution of the training examples.

2) Inappropriate regularization. In practice, people
found that data normalization (i.e., subtracted by means
and divided by standard variance) usually improves the
performance of an SVM. This is because an SVM uses
the 2l norm of vector w (i.e. 2w) as its penalty term,
in which weights of different features are added
together using the same scale (i.e., 1). Thus, the penalty
term in an SVM requires the values of different input
features comparable. However, it is rather difficult to
normalize kernel-induced nonlinear features because
they usually do not have explicit expressions. As a
result, high order nonlinear features may suffer more
from the penalty term 2w since their values are rather
small and need large weights to have noticeable impact
on decision boundaries.

3) Implicit features. It is usually difficult to derive
explicit expressions for kernel-induced features. This
makes it hard to infer critical nonlinear features from
learned SVM models using nonlinear kernel functions.
This increases the difficulty for users to comprehend
the learned results.

In this paper, we propose a feature induction algorithm
that explicitly introduces nonlinear features into an
SVM to boost its classification performance.
Particularly, this new algorithm addresses the above
three shortcomings with the kernel-induced features.
The explicit introduction of nonlinear features allows
the proposed algorithm to concentrate on the subspace
of important features. Data normalization can be
performed on the induced features in the same fashion
as on the existing features. It is easier to interpret an
SVM model using the explicitly induced features than
an SVM model with the features implicitly induced by
kernel functions.

The proposed algorithm works as follows: for each
iteration, the algorithm examines the characteristics of
the misclassified training examples and generates a new
feature aimed to correct mistakes. The algorithm is
similar to AdaBoost (Schapire & Singer, 1999) in that
both boost the classification performance by utilizing
the misclassified training examples. The most important
distinction between them is that the proposed algorithm
creates new features while the AdaBoost algorithm
generates new instances of ‘weak’ classifiers. If we
view each instance of the ‘weak’ classifier as a feature
generation function, the AdaBoost algorithm may also
be treated as a feature induction method. However, the
proposed algorithm differs from AdaBoost in the
following three important aspects:

1) The proposed algorithm only needs to identify the
important nonlinear features while the AdaBoost
algorithm has to create new ‘weak’ classifiers as well as
compute the optimal weights that combine multiple
‘weak’ classifiers.
2) The proposed algorithm can take advantage of the
regularization mechanism within an SVM model to
avoid the over-fitting problem. In contrast, AdaBoost is
a greedy algorithm. Empirical studies have shown that
the AdaBoost algorithm tends to over-fit training
examples when the data is noisy (Opitz & Macline,
1999; Ratsch et al., 2000; Grove & Schuurmans,1998;
Dietterich, 2000; Jin et al., 2003).
3) Unlike AdaBoost where the induced ‘weak’
classifiers are linearly combined, the new features
induced by the proposed algorithm can be combined
nonlinearly through kernel functions.

The rest of the paper is arranged as follows: Section 2
discusses the related work; Section 3 describes the
details of the proposed feature induction algorithm for
SVMs; Section 4 presents an empirical study for the
proposed algorithm; and Section 5 concludes this work.

2. Related Work

We will first discuss the previous work on feature
induction, next review an SVM model and its related
kernel method because this work targets on the feature

induction problem for SVMs, and then describe the
core idea of the AdaBoost algorithm since the proposed
algorithm utilizes the idea of boosting algorithms.

Previous work on feature induction. Della Pietra et
al. (1997) proposed an efficient algorithm to search for
features that can effectively increase the likelihood of
training data (i.e. log (|)i ii Training p y x

∈∑). This idea

was applied to the whole sentence language model
(Rosenfeld et al., 1999), in which a sentence is
summarized into a set of features and described by a
conditional exponential model. It is later extended to
the conditional random field (MacCallum, 2003) to
allow for more tuning of the algorithm in order to
further improve the learning efficiency. Similarly, the
proposed feature induction algorithm is to search for
features that can effectively decrease the objective
function in an SVM. The difficulty of inducing
effective nonlinear features for SVMs arises due to the
fact that SVMs attempt to solve a constrained
optimization problem in which features only appear in
the constraints. As a result, changes in features cannot
directly influence the objective function of an SVM
model. This is in contrast to the feature induction for a
conditional exponential model in which the objective
function is expressed explicitly in terms of input
features. Rennie & Jaakkola’s work (2003) also
involved feature induction for classifying spam emails.
They propose a compression algorithm for text
categorization and introduce effective features to
achieve the maximum compression rate. It is different
from aforementioned works on feature induction in that
it does not have an analytic objective function that is
related to features. Therefore, the search of new
features is rather heuristic and ad-hoc.

Support Vector Machines. Here we only review the
SVM model for binary classification (Burges, 1998).
Let D denote the training data, 1{ , }N

i i iD x y == < >
r . Each

pair in the training data consists of an input vector ixr
and output label iy (either +1 or -1). An SVM model
with the linear kernel is written as the following
optimization problem:

1
2, , ,..., 1

min

subject to
[1...], () 1 , 0

N

N

i
w b i

i i i i

w c

i N y x w b

ξ ξ
ξ

ξ ξ

=
+

∀ ∈ ⋅ − ≥ − ≥

∑r
r

r r

(1)

where c is a constant that controls the amount of
admissible errors. The dual form of the above
optimization problem is:

()
1,..., 1 1 1

1

1max
2

subject to 0, [1...], 0

N

N N N

i i j i j i j
i i j

N

i i i
i

y y x x

y i N c

α α
α α α

α α

= = =

=

 
− ⋅  

 

= ∀ ∈ ≤ ≤

∑ ∑∑

∑

r r

 (2)

By replacing the dot product i jx x⋅
r r in the above

equation with a kernel function (,)i jK x xr r , we can
implicitly introduce nonlinear features into the SVM
model.

As indicated from Equation (1), the input features do
not appear in the objective function. Instead, they show
up in the constraints () 1i i iy x w b ξ⋅ − ≥ −

r r and can only
influence the objective function through the constraints.
This indirectness makes the induction of effective
features rather difficult. To directly relate input features
to the objective function, we can rewrite the
optimization problem in Equation (1) in the following
form:

2, 1
min max(0, () 1)

N

i i
w b i

w c y x w b
=

+ − ⋅ − +∑r
r r r

 (3)

We can observe in the above Equation that constraints
are removed by replacing each slack variable iξ with a
term max(0, () 1)i iy x w b− ⋅ − +

r r in the objective
function. Optimizing Equation (3) is still difficult
because it involves discontinuous function `max’. To
solve this problem, we follow the idea in (Zhang et al.,
2003) to approximate the function
max(0, () 1)i iy x w b− ⋅ − +

r r with a log-linear function

[]{ }1 log 1 exp(() 1)i iy x w bγ
γ

+ − ⋅ − +
r r . It is proved by

Zhang et al. (2003) that this log-linear function forms
an upper bound for function max(0, () 1)i iy x w b− ⋅ − +

r r
and will uniformly converge to the max function when
γ → +∞ . The proposed feature induction algorithm is
based on this particular approximation form of an SVM
model.

AdaBoost. As we mentioned earlier, the proposed
feature induction algorithm is similar to AdaBoost in
that both are iterative algorithms and create a new
entity at each iteration to correct the mistakes made by
the current model. The main idea of AdaBoost is to
introduce a new instance of a ‘weak’ classifier at each
step to greedily reduce the classification error.
Specifically, let 0 ()H x be the classification function of
current iteration and our goal is to generate a new
‘weak’ classifier ()h x such that the combination of

0 ()H x with ()h x , i.e., 0() () ()H x H x h xα= + , will
have a smaller classification error. In AdaBoost, a
‘weak’ classifier is trained over weighted examples

with a weight 0exp(())i iH x y− for each example
,i ix y< > . The final classifier ()fH x is the linear

combination of all ‘weak’ classifiers generated from
every iteration, i.e., 1() ()f t ttH x h xα

=
= ∑ .

If each ‘weak’ classifier ()th x is viewed as a feature
function, the final classifier ()fH x is simply a linear

model for the induced features { ()}th x . In this sense,
we can treat AdaBoost as a special feature induction
algorithm. However, unlike other feature induction
algorithms that are only responsible for generating new
features, AdaBoost needs to not only generate new
features (i.e., ‘weak’ classifiers) but also learn the linear
model (i.e., combination weights tα). Thus, the feature
induction algorithms have advantages over AdaBoost in
that they can rely on the classification model to
appropriately combine the induced features with the
existing features. Particularly, a feature induction
algorithm for SVMs can benefit greatly from the nice
properties of SVMs: 1) Unlike AdaBoost that may
over-fit noisy data, the feature induction algorithm for
SVM can avoid the over-fitting problem because of the
regularization mechanism inside the SVM model; 2)
Unlike AdaBoost where the induced ‘weak’ classifiers
are linearly combined, the features induced for the
SVM model are able to interact with each other
nonlinearly through a kernel function.

3. Feature Induction Algorithm for SVMs

As discussed in Section 2, in order to find effective
features for an SVM, we use the special form of SVMs
in Equation (3) and approximate function
max(0, () 1)i iy x w b− ⋅ − +

r r with a log-linear function

[]{ }1 log 1 exp(() 1)i iy x w bγ
γ

+ − ⋅ − +
r r . Putting them

together, the objective function in the original SVM
model is approximated as follows:

{ }

2
1

1

(,) max(0, () 1)

1(,) log 1 exp(() 1)

N

SVM i i
i

N

app i i
i

l w b c w y x w b

l w b y x w bγ
γ

=

=

= + − ⋅ − +

≈ = + − ⋅ − +  

∑

∑

r r r r

r r r
 (5)

Note that the regularization term 2c w
r is removed

from the approximated objective function (,)appl w b
r .

This is because

[]{ }1 log 1 exp(() 1) max(0, () 1)i i i iy x w b y x w bγ
γ

+ − ⋅ − + ≥ − ⋅ − +
r r r r

where the equality is taken only when γ → +∞ .
Therefore, we can always choose constant 0γ > to

make the approximated objective function (,)appl w b
r

equal to the true one (,)SVMl w br . In effect, constant γ
plays the similar role as the regularization term. An
appropriate choice of γ will lead to less generalization
error. This point will be further discussed later.

Let xr be the current feature vector and ()g xr be the
new feature that is introduced to the current SVM
model. Let (,)appl w br be the approximated objective

function that only uses the old features xr , and
' ({ , },)appl w bαr be the approximated objective function

that uses both old features xr and the new feature ()g xr .

Therefore ' ({ , },)appl w bα
r can be expressed as follows:

{ }

' ({ , },)

1 log 1 exp((()))

app

i i ii

l w b

y x w g x b

α

γ γ α
γ

=

+ − ⋅ + −∑

r

r r r (6)

where α stands for the weight of the new feature and
b’ stands for the new threshold value. In the above
expression for the new objective function, we assume
both the weights for the old features, i.e., wr , and the
threshold value b are almost unchanged with the
inclusion of the new feature ()g xr . This is a reasonable
assumption when the classification error of an SVM
using the old features xr is low and the induced feature
will not result in a large change in the SVM model.

To find an effective new feature ()g xr , we consider the
difference between the two objective functions:

' ({ , },) (,)

1 exp((()))1 log
1 exp(())

exp(())) 11 log 1
1 exp(())

app app

i i i
i

i i

i i
i

i

l w b l w b

y x w g x b
y x w b

y g x
H x

α

γ γ α
γ γ γ

γ α
γ γ

−

 + − ⋅ + −
=  + − ⋅ − 

 − −
= + + 

∑

∑

r r

r r r

r r

r

r

(7)

where ()iH xr is defined as () () 1i i iH x y x w b= ⋅ − −
r r r .

Using the inequality log(1)x x+ ≤ , we have an upper
bound for the difference of two objective functions as:

[]

' ({ , }, ') (,)

exp(()))1 1 1
1 exp(()) 1 exp(())

app app

i i
i i

i i

l w b l w b

y g x
H x H x

α

γα
γ γ γ γ

− ≤

−
−

+ +∑ ∑

r r

r

r r
(8)

To remove the interaction between the induced feature
()g xr and the weight α, we further assume the outputs

of ()g xr fall into the interval [-1,1]. Based on the

inequality 1 1 for [1,1]
2 2

x x xe e e xλ λ λ−+ −   ≤ + ∈ −   
   

,

the upper bound in Equation (8) can be further
simplified as:

[]

' ({ , }, ') (,)

1
2 1 exp(())

1 1
1 exp(())

()
2 1 exp(())

app app

i
i

i
i

i i
i

i

l w b l w b

e e
H x

H x

y g xe e
H x

αγ αγ

αγ αγ

α

γ

γ γ

γ

−

−

− ≤

 +
 

+  

−
+

 −
−  

+  

∑

∑

∑

r r

r

r

r

r

 (8’)

The first two terms in the above equation are not related
to the induce feature and therefore can be ignored. The
third term comprises of a summation over all the
training examples with each example contributing

()
1 exp(())

i i

i

y g x
H xγ+

r

r . Therefore, a good feature function

()g xr that minimizes the quantity in Equation (8) can
be obtained by learning a classification model over the
training examples that are weighted by the factor

1
1 exp(())iH xγ+

r . This factor gives high weights to

misclassified examples in which ()iH xr are negative,
and low weights to correctly classified examples where

()iH xr are positive. This is similar to the weight

distribution ()H xe−
r

 used in AdaBoost but with two
important distinctions:

1) The weights used by the proposed feature induction

algorithm is bounded, i.e., 1 1
1 exp(())iH xγ

<
+

r , while

the weights used by AdaBoost is unbounded. This
bounded nature allows the proposed algorithm to avoid
over-emphasis on the misclassified examples.

2) In the proposed weights for the training examples,
constant γ controls the tradeoff between the training
error and the model complexity. With a large value of γ,
more weights are assigned to the misclassified
examples and therefore training errors can be reduced
more efficiently. On the other hand, a small γ will result
in less weight assigned to the misclassified examples
and less chance to over-fit training data. Therefore,
constant γ has the similar impact on the generalization
error as the regularization term in an SVM model.

The remaining question is how to determine the
appropriate value for constant γ , which has been
justified as an important factor in the above discussion.
Since the introduction of γ is to approximate the
original objective function of an SVM model in
Equation (3), the optimal γ can be found by minimizing

the difference between the two objective functions
(,)appl w br and SVMl , i.e.,

()2* arg min (,)app SVMl w b l
γ

γ
∈ℜ

= −
r

 (9)

It can be seen that that function ()2
(,)app SVMl w b l−
r is a

convex function with regard to γ, which can be easily
justified by its second order derivative. Therefore, there
is a global minimum solution for γ. Standard
optimization algorithms such as conjugate gradient and
the Newton method can be applied to solve the
optimization problem in Equation (9).

Figure 1 summarizes the proposed feature induction
algorithm for SVMs, which alternatively applies the
procedure of computing weights and the procedure of
training a new classification model.

4. Experiments

In this experiment, we will examine the effectiveness of
the proposed feature induction algorithm for SVM.
Particularly, we will address the following three
questions:

1) How effective and robust is the proposed feature
induction algorithm for improving classification

accuracy of SVMs? 50 different nonlinear features are
generated for each experiment and the change of testing
errors using linear SVM model with respect to the
number of induced features are examined.

2) How effective is the proposed feature induction
algorithm compared to SVMs using nonlinear kernels?
SVMs with polynomial kernels and a RBF kernel are
experimented and their results are compared with those
using the feature induction algorithm.

3) How effective is the proposed feature induction
algorithm compared to AdaBoost? The AdaBoost
algorithm using a linear SVM as its basis classifier is
run over the same set of datasets and its results are
compared to the feature induction algorithm.

Data Set # Examples # Features

ionosphere 351 341

breast_cancer 268 9

spam 4601 58

cmc 1473 10

people 3840 9

outdoor 3500 126

Table 1: Statistics of Experimental Datasets

Six different datasets are used in experiments: four of
them are from the UCI machine learning repository and
the other two are from real world applications. The
statistics of all eights datasets are listed in Table 1.
‘People’ and ‘Outdoors’ are the two datasets from
image classification tasks: dataset ‘People’ is used for
the task of identifying scenes that have more than two
people, and dataset ‘Outdoor’ is used for the task of
identifying outdoor scenes. Both are data samples used
for TREC video retrieval evaluation (TRECVID, 2003).

In the experiments, we choose the decision tree
algorithm (C4.5, Quinlan, 1993) to be the classification
model for the proposed feature induction algorithm.
This is because the decision tree algorithm can
introduce nonlinear interactions between multiple
features through conjunctions of Boolean literals. A
Newton method is used to find γ that optimizes
Equation (9). To further prevent over-fitting the training
data, we set the upper bound for γ to be 50 in the
experiments. The WEKA SVM implementation (Witten
& Frank, 1999) is used for experiments. The kernel
functions used in comparison are a RBF kernel and
polynomial kernels with degrees ranging from 1 to 5.
The maximum number of features induced by the
proposed algorithm is 50. Unless specified, all
experiments are conducted using the 10-fold cross
validation, with 90% of the data used for training and
the remaining 10% for testing.

Feature Induction for SVM

F: a set of features 1 2{ , ,..., }Df f f=F

W: weights for training examples
1 2{ , ,..., }NW W W=W

D: training examples 1{ , }N
i i ix y == < >D r

Initialization:

• W ={1, 1, …,1}

• F = {all the original features}
Repeat until the desired performance

• Train a SVM model using feature set F
• Compute W using []1/ 1 exp(())i

iW H xγ= +
r

• Sample examples according the distribution
/i j

jW W∑
• Train a classification model

() : [1...1]g x → −Xr using the sampled
examples

• { , ()}g x←F F r
Figure 1: Description of the feature induction
algorithm for SVMs

4.1 Experiment I: Effectiveness and Robustness of
The Feature Induction Algorithm

Figure 2 displays both the training error and the testing
errors of a linear SVM model that uses the proposed
feature induction algorithm for six different datasets.
Each solid line represents the change of training errors
with respect to the number of induced features. Each
dash-dot line represents the change of the
corresponding testing errors. First, for all datasets, the
induced features are able to significantly reduce the
training error of a linear SVM model. The most
noticeable case is dataset ‘ionosphere’, in which the
training error has been reduced from 5.6% to zero. This
fact indicates that the approximation used in the
previous analysis is valid and reasonably accurate.

Second, despite of the minor fluctuation in testing
errors, for all datasets, the overall trend is that the more
the induced features are, the smaller the classification
error is. Notice that although datasets such as ‘people’,
‘cmc’, and ‘breast_cancer’ have no more than 10
features, by introducing 50 new nonlinear features, we
are still able to reduce the testing error of a linear SVM
model without significantly overfitting training data.
The most noticeable case is dataset ‘breast_cancer’, in
which a significant drop in the testing error is observed
when the number of induced features is between 7 and
9. However, with more induced features, we see that the
testing error for dataset ‘breast_cancer’ keeps
decreasing. This trend is consistent with the analysis
presented in the introduction section. Explicitly induced
new nonlinear features can be normalized to the same
scale as the original features. As a result, the

Poly. Degree breast_cancer ionosphere cmc spam people outdoor

1 3.97% 9.71% 33.40% 6.67% 41.98% 7.13%
2 2.06% 10.29% 30.48% 18.07% 45.35% 1.12%
3 2.79% 16.57% 30.75% 28.61% 45.54% 1.12%
4 2.65% 18.57% 30.54% 36.43% 45.51% 1.15%
5 3.82% 18.29% 33.13% 37.17% 45.51% 1.17%

Table 2: Testing errors for SVM model using polynomial kernels with degree ranging from 1 to 5.

Figure 2: Training and testing errors of a linear SVM model using the proposed feature induction algorithm
for six different datasets. Each solid line represents the change of testing errors with respect to the number of
induced features and each dash-dot line represents the corresponding change in training errors.

0 20 40 60
0.015

0.02

0.025

0.03

0.035
E

rr
breast_cancer

0 20 40 60
0

0.05

0.1

E
rr

ionosphere

0 20 40 60
0.25

0.3

0.35

E
rr

cmc

0 20 40 60
0.03

0.04

0.05

0.06

0.07

E
rr

spam

0 20 40 60

0.36

0.38

0.4

0.42

#Induced Features

E
rr

people

0 20 40 60
0

0.02

0.04

0.06

0.08

#Induced Features

E
rr

outdoor

regularization mechanism in the SVM model is
effective in preventing the overfitting of training data
that could potentially be caused by the large number of
induced features. In contrast, applying nonlinear kernels
to induce nonlinear features can actually lead to a
significant overfitting problem. Table 2 presents the
testing errors of the SVM model using polynomial
kernels of different degrees. Notice that, for many
datasets, a high degree polynomial kernel can
significantly degrade the SVM performance. For
example, compared to a linear SVM model (poly.
degree equals 1), using a polynomial kernel of degree 5
results in a substantially worse classification error for
almost all datasets except ‘outdoor’ as shown in Table
2. The most noticeable case is dataset ‘spam’, whose
testing error is only 6.67% for a linear SVM model.
However, the testing error shoots up to 37.17% when a
polynomial kernel of degree 5 is used. As discussed in
the introduction section, this phenomenon can be
attributed to the fact that nonlinear features are
introduced implicitly through kernel functions and
therefore are difficult to be normalized to the same
scale as the original features. As a result, the
regularization mechanism in SVM may not be able to
work appropriately to prevent overfitting problems.

The trend seen in Figure 2 shows that the increased
number of induced features can often help improve
testing accuracy. However, the increased number of
induced features is associated with increased computing
costs. Its diminishing gain in accuracy as the number of
induced features increases suggests a heuristic stopping
criterion: stop when the gain between the two
subsequent runs is insignificant.

4.2 Experiment II: Comparison with Nonlinear
Kernels

We apply both polynomial kernels and the RBF kernel
to introduce nonlinear features for SVMs. Both the
degree of polynomial kernels and variance for RBF
kernel are determined through an internal cross
validation procedure using 20% of training data that are
randomly selected from the original training pool. The
same cross validation procedure is applied to determine
the variance for the RBF kernel. The results of testing
errors for polynomial kernels and RBF kernels are

presented in Table 3, together with the results for the
proposed feature induction algorithm. For the purpose
of comparison, we also include the testing errors for an
SVM model using the linear kernel, which is referred as
baseline model in Table 3. A boldfaced number
indicates that its testing error is substantially better than
the baseline model, and an italic font is applied when it
is substantially worse than the baseline model. First,
between the two kernel functions, the RBF kernel
appears to perform significantly better than the
polynomial kernels for almost all datasets. It manages
to improve the performance substantially for three out
of six datasets and achieves the same performance as
the baseline model for the rest datasets. In contrast, the
polynomial kernels improve classification accuracy for
only two out of six datasets while degrading the
performance for the other three datasets. Second, the
proposed feature induction algorithm consistently
performs better than the baseline model for all datasets.
Particularly, it achieves substantial reduction in testing
errors for five out of six datasets. This is noticeably
better than both the RBF and polynomial kernels. Based
on the above observation, we conclude that the
proposed algorithm is more robust and effective than
the nonlinear kernels in terms of inducing nonlinear
features for the SVM model.

4.3 Experiment III: Comparison with AdaBoost

Methods breast_cancer ionosphere cmc spam people outdoor

baseline 3.97% 9.71% 33.40% 6.67% 41.98% 7.13%
polynomial 2.69% 13.43% 34.90% 9.50% 45.40% 1.03%

RBF 2.79% 8.97% 30.30% 6.81% 41.4% 0.50%
Feature Induction 2.75% 5.14% 29.80% 6.35% 39.32% 4.33%

AdaBoost 3.20% 12.81% 33.00% 9.37% 41.40% 6.51%
Table 3: Testing errors for different methods. The baseline model refers to a linear SVM model. A bold
font is applied when a testing error is substantially better than the baseline model, and an italic font is
applied when it is substantially worse than the baseline model

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

bre
as

t_c
an

ce
r

ion
os

ph
ere cm

c
sp

am
pe

op
le

ou
tdo

or

Baseline
AdaBoost

Figure 3: Training errors of AbaBoost and a linear
SVM model (referred as baseline).

We compare the proposed feature induction algorithm
for SVMs to the AdaBoost algorithm that uses SVM
model as its base classifier. For both algorithms, a
linear kernel is used for the SVM model. The maximum
number of iterations for AdaBoost is set to be 20. The
testing errors for AdaBoost are presented in Table 3.
Compared to the proposed feature induction algorithm,
AdaBoost appears to be less effective in improving the
performance of an SVM model. For most datasets, it
only achieves the same performance as the original
SVM model. A further examination of training errors
for AdaBoost in Figure 3 indicates that the AdaBoost
algorithm cannot even reduce the training errors
significantly for almost all datasets except ‘people’.
This can be explained by the fact that both a linear
SVM model and the AdaBoost algorithm using a linear
combination model. As a result, the introduction of
AdaBoost does not change the linear nature of a linear
SVM model and therefore has little impact on the
classification accuracy.

5. Conclusions

Induced features can reduce classification errors. In this
paper, we propose a new feature induction algorithm
for SVMs. Unlike the kernel method where the number
of induced features is usually large (even infinite), the
proposed algorithm only creates nonlinear features that
can effectively reduce training errors. Specifically, new
features are induced iteratively. At each step, it weights
training examples differently according to the outputs
of the current SVM model. The weighted training
examples are then used to train a classification model
that becomes a new feature for the SVM model.
Empirical studies over both UCI datasets and datasets
of real applications indicate that the proposed feature
induction algorithm is not only effective in improving
the performance of a linear SVM model but also robust
even when the number of induced features is
substantially larger than the number of original features.

References
Joachims, T. (2001). A Statistical Learning Model of

Text Classification for SVMs. In Proceeding of 24th
ACM International Conference on Research and
Development in Information Retrieval.

Teytaud, O. and Sarrut, O. (2001). Kernel-based Image
Classification, Lecture Notes in Computer Science,
http://www.citeseer.nj.nec.com/496638.html.

Phillips, P. J. (1998). Support Vector Machines Applied
to Face Recognition. In Advances in Neural
Information Processing Systems 11, page 803.

Opitz, D., & Macline, R. (1999). Popular Ensemble
methods: An Empirical Study. Journal of AI Research
pp.169–198.

Jin, R., Liu, Y., Si, L., James, C., & A.G. Hauptmann
(2003). A New Boosting Algorithm Using Input-
Dependent Regularizer. In Proceedings of 20th
International Conference on Machine Learning.

Dietterich, T. G. (2000). An Experimental Comparison
of Three Methods for constructing Ensembles of
Decision Trees: Bagging, Boosting, and
Randomization. Machine Learning, 40, 139–157.

Grove, A. J., & Schuurmans, D. (1998). Boosting in the
Limit: Maximizing the Margin of Learned Ensembles.
In Proceedings of the Fifteenth National Conference
on Artificial Intelligence pp. 692–699.

Ratsch, G., Onoda, T., & Muller, K. (2000). Soft
Margins for Adaboost. Machine Learning, 42, 287–
320.

Rennie, J D. M. & Jaakkola, T. (2002). Automatic
Feature Induction for Text Classification, MIT
Artificial Intelligence Laboratory Abstract Book.

Della Pietra, S., Della Pietra, V.J., & Lafferty, J.D.
(1997). Inducing Features of Random Fields. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 19, 380-393.

Rosenfeld, R., Wasserman, L., Cai, C., & Zhu, X.J.
(1999). Interactive Feature Induction and Logistic
Regression for Whole Sentence Exponential
Language Models. In Proc. IEEE workshop on
Automatic Speech Recognition and Understanding,
Keystone, Colorado.

Burges, C.J.C. (1998). A Tutorial on Support Vector
Machine for Pattern Recognition, Knowledge
Discovery and Data Mining, 2(2).

Witten, I.H. & Frank, E. (1999). Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann.

Schapire, R.E. & Singer, Y. (1999). Improved Boosting
Algorithms using Confidence-rated Predictions,
Machine Learning 37 (3): 291-336.

Quinlan, R. (1993). C4.5: Programs for Machine
Learning, Morgan Kaufmann Publishers, San Mateo,
CA.

TRECVID (2003). http://www-
nlpir.nist.gov/projects/tv2003/tv2003.html.

Zhang, J., Jin, R., Yang, Y. & Hauptmann, A.G. (2003).
Modified Logistic Regression: An Approximation to
SVM and its Applications in Large-Scale Text
Categorization, In Proc. of International Conference
on Machine Learning (ICML 2003).

McCallum, A. (2003). Efficiently Inducing Features of
Conditional Random Fields. In Proc. Of 19th
Uncertainty in Articifical Intelligence (UAI 2003).

