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Abstract  
The goal of feature induction is to 
automatically create nonlinear combinations of 
existing features as additional input features to 
improve classification accuracy. Typically, 
nonlinear features are introduced into a 
support vector machine (SVM) through a 
nonlinear kernel function. One disadvantage of 
such an approach is that the feature space 
induced by a kernel function is usually of high 
dimension and therefore will substantially 
increase the chance of over-fitting the training 
data. Another disadvantage is that nonlinear 
features are induced implicitly and therefore 
are difficult for people to understand which 
induced features are critical to the 
classification performance. In this paper, we 
propose a boosting-style algorithm that can 
explicitly induces important nonlinear features 
for SVMs. We present empirical studies with 
discussion to show that this approach is 
effective in improving classification accuracy 
for SVMs. The comparison with an SVM 
model using nonlinear kernels also indicates 
that this approach is effective and robust, 
particularly when the number of training data 
is small. 

1.  Introduction 

For the last couple of years, support vector machines 
(SVMs) have been successfully applied to many 
applications, such as text classification (Joachims, 
2001), image classification (Teytaud & Sarrut, 2001), 
and face recognition (Phillips, 1998). Compared to 
other learning machines, SVMs have two advantages: 
1) controlling model complexity through a 
regularization term, and 2) inducing nonlinear features 
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through a nonlinear kernel function. The first advantage 
makes SVMs more robust to noises and less likely to 
over-fit the training data. The second advantage 
increases the expressive power of SVMs and makes 
SVMs suitable for complicated classification tasks.  
Many empirical studies have shown that appropriate 
choice of nonlinear kernels can significantly improve 
the classification accuracy (Teytaud & Sarrut, 2001). 
However, there are also some shortcomings of using 
kernel-induced features for an SVM model: 

1) Non-sparse weights. The feature space induced by a 
nonlinear kernel function is usually of large 
dimensionality and could be infinite in some cases. 
When the data can be separated with a few nonlinear 
features, a kernel-induced feature scheme may have to 
assign non-zero weights to many training examples in 
order to concentrate on those important induced 
features. This can result in sparseness in the induced 
feature space that can lead to a non-sparse weight 
distribution of the training examples. 

2) Inappropriate regularization. In practice, people 
found that data normalization (i.e., subtracted by means 
and divided by standard variance) usually improves the 
performance of an SVM. This is because an SVM uses 
the 2l  norm of vector w (i.e. 2w ) as its penalty term, 
in which weights of different features are added 
together using the same scale (i.e., 1). Thus, the penalty 
term in an SVM requires the values of different input 
features comparable. However, it is rather difficult to 
normalize kernel-induced nonlinear features because 
they usually do not have explicit expressions. As a 
result, high order nonlinear features may suffer more 
from the penalty term 2w  since their values are rather 
small and need large weights to have noticeable impact 
on decision boundaries.  

3) Implicit features. It is usually difficult to derive 
explicit expressions for kernel-induced features. This 
makes it hard to infer critical nonlinear features from 
learned SVM models using nonlinear kernel functions. 
This increases the difficulty for users to comprehend 
the learned results.  



 

 

In this paper, we propose a feature induction algorithm 
that explicitly introduces nonlinear features into an 
SVM to boost its classification performance. 
Particularly, this new algorithm addresses the above 
three shortcomings with the kernel-induced features. 
The explicit introduction of nonlinear features allows 
the proposed algorithm to concentrate on the subspace 
of important features. Data normalization can be 
performed on the induced features in the same fashion 
as on the existing features. It is easier to interpret an 
SVM model using the explicitly induced features than 
an SVM model with the features implicitly induced by 
kernel functions.  

The proposed algorithm works as follows: for each 
iteration, the algorithm examines the characteristics of 
the misclassified training examples and generates a new 
feature aimed to correct mistakes. The algorithm is 
similar to AdaBoost (Schapire & Singer, 1999) in that 
both boost the classification performance by utilizing 
the misclassified training examples. The most important 
distinction between them is that the proposed algorithm 
creates new features while the AdaBoost algorithm 
generates new instances of ‘weak’ classifiers. If we 
view each instance of the ‘weak’ classifier as a feature 
generation function, the AdaBoost algorithm may also 
be treated as a feature induction method. However, the 
proposed algorithm differs from AdaBoost in the 
following three important aspects: 

1) The proposed algorithm only needs to identify the 
important nonlinear features while the AdaBoost 
algorithm has to create new ‘weak’ classifiers as well as 
compute the optimal weights that combine multiple 
‘weak’ classifiers. 
2) The proposed algorithm can take advantage of the 
regularization mechanism within an SVM model to 
avoid the over-fitting problem. In contrast, AdaBoost is 
a greedy algorithm. Empirical studies have shown that 
the AdaBoost algorithm tends to over-fit training 
examples when the data is noisy (Opitz & Macline, 
1999; Ratsch et al., 2000; Grove & Schuurmans,1998; 
Dietterich, 2000; Jin et al., 2003).  
3) Unlike AdaBoost where the induced ‘weak’ 
classifiers are linearly combined, the new features 
induced by the proposed algorithm can be combined 
nonlinearly through kernel functions.  

The rest of the paper is arranged as follows: Section 2 
discusses the related work; Section 3 describes the 
details of the proposed feature induction algorithm for 
SVMs; Section 4 presents an empirical study for the 
proposed algorithm; and Section 5 concludes this work. 

2.  Related Work 

We will first discuss the previous work on feature 
induction, next review an SVM model and its related 
kernel method because this work targets on the feature 

induction problem for SVMs, and then describe the 
core idea of the AdaBoost algorithm since the proposed 
algorithm utilizes the idea of boosting algorithms. 

Previous work on feature induction. Della Pietra et 
al. (1997) proposed an efficient algorithm to search for 
features that can effectively increase the likelihood of 
training data (i.e. log ( | )i ii Training p y x

∈∑ ). This idea 

was applied to the whole sentence language model 
(Rosenfeld et al., 1999), in which a sentence is 
summarized into a set of features and described by a 
conditional exponential model. It is later extended to 
the conditional random field (MacCallum, 2003) to 
allow for more tuning of the algorithm in order to 
further improve the learning efficiency. Similarly, the 
proposed feature induction algorithm is to search for 
features that can effectively decrease the objective 
function in an SVM. The difficulty of inducing 
effective nonlinear features for SVMs arises due to the 
fact that SVMs attempt to solve a constrained 
optimization problem in which features only appear in 
the constraints. As a result, changes in features cannot 
directly influence the objective function of an SVM 
model. This is in contrast to the feature induction for a 
conditional exponential model in which the objective 
function is expressed explicitly in terms of input 
features. Rennie & Jaakkola’s work (2003) also 
involved feature induction for classifying spam emails. 
They propose a compression algorithm for text 
categorization and introduce effective features to 
achieve the maximum compression rate. It is different 
from aforementioned works on feature induction in that 
it does not have an analytic objective function that is 
related to features. Therefore, the search of new 
features is rather heuristic and ad-hoc. 

Support Vector Machines. Here we only review the 
SVM model for binary classification (Burges, 1998). 
Let D denote the training data, 1{ , }N

i i iD x y == < >
r . Each 

pair in the training data consists of an input vector ixr  
and output label iy  (either +1 or -1). An SVM model 
with the linear kernel is written as the following 
optimization problem: 
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where c is a constant that controls the amount of 
admissible errors. The dual form of the above 
optimization problem is: 
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By replacing the dot product i jx x⋅
r r  in the above 

equation with a kernel function ( , )i jK x xr r , we can 
implicitly introduce nonlinear features into the SVM 
model. 

As indicated from Equation (1), the input features do 
not appear in the objective function. Instead, they show 
up in the constraints ( ) 1i i iy x w b ξ⋅ − ≥ −

r r  and can only 
influence the objective function through the constraints. 
This indirectness makes the induction of effective 
features rather difficult. To directly relate input features 
to the objective function, we can rewrite the 
optimization problem in Equation (1) in the following 
form: 

2, 1
min max(0, ( ) 1)

N

i i
w b i

w c y x w b
=

+ − ⋅ − +∑r
r r r

 (3) 

We can observe in the above Equation that constraints 
are removed by replacing each slack variable iξ  with a 
term max(0, ( ) 1)i iy x w b− ⋅ − +

r r  in the objective 
function. Optimizing Equation (3) is still difficult 
because it involves discontinuous function `max’. To 
solve this problem, we follow the idea in (Zhang et al., 
2003) to approximate the function 
max(0, ( ) 1)i iy x w b− ⋅ − +

r r  with a log-linear function 

[ ]{ }1 log 1 exp( ( ) 1 )i iy x w bγ
γ

+ − ⋅ − +
r r . It is proved by 

Zhang et al. (2003) that this  log-linear function forms 
an upper bound for function max(0, ( ) 1)i iy x w b− ⋅ − +

r r  
and will uniformly converge to the max function when 
γ → +∞ . The proposed feature induction algorithm is 
based on this particular approximation form of an SVM 
model. 

AdaBoost. As we mentioned earlier, the proposed 
feature induction algorithm is similar to  AdaBoost in 
that both are iterative algorithms and create a new 
entity at each iteration to correct the mistakes made by 
the current model. The main idea of AdaBoost is to 
introduce a new instance of a ‘weak’ classifier at each 
step to greedily reduce the classification error. 
Specifically, let 0 ( )H x  be the classification function of 
current iteration and our goal is to generate a new 
‘weak’ classifier ( )h x  such that the combination of 

0 ( )H x  with ( )h x , i.e., 0( ) ( ) ( )H x H x h xα= + , will 
have a smaller classification error. In AdaBoost, a 
‘weak’ classifier is trained over weighted examples 

with a weight 0exp( ( ) )i iH x y−  for each example 
,i ix y< > . The final classifier ( )fH x  is the linear 

combination of all ‘weak’ classifiers generated from 
every iteration, i.e., 1( ) ( )f t ttH x h xα

=
= ∑ .  

If each ‘weak’ classifier ( )th x  is viewed as a feature 
function, the final classifier ( )fH x  is simply a linear 

model for the induced features { ( )}th x . In this sense, 
we can treat AdaBoost as a special feature induction 
algorithm. However, unlike other feature induction 
algorithms that are only responsible for generating new 
features, AdaBoost needs to not only generate new 
features (i.e., ‘weak’ classifiers) but also learn the linear 
model (i.e., combination weights tα ). Thus, the feature 
induction algorithms have advantages over AdaBoost in 
that they can rely on the classification model to 
appropriately combine the induced features with the 
existing features. Particularly, a feature induction 
algorithm for SVMs can benefit greatly from the nice 
properties of SVMs: 1) Unlike AdaBoost that may 
over-fit noisy data, the feature induction algorithm for 
SVM can avoid the over-fitting problem because of the 
regularization mechanism inside the SVM model; 2) 
Unlike AdaBoost where the induced ‘weak’ classifiers 
are linearly combined, the features induced for the 
SVM model are able to interact with each other 
nonlinearly through a kernel function. 

3.  Feature Induction Algorithm for SVMs 

As discussed in Section 2, in order to find effective 
features for an SVM, we use the special form of SVMs 
in Equation (3) and approximate function 
max(0, ( ) 1)i iy x w b− ⋅ − +

r r  with a log-linear function 

[ ]{ }1 log 1 exp( ( ) 1 )i iy x w bγ
γ

+ − ⋅ − +
r r . Putting them 

together, the objective function in the original SVM 
model is approximated as follows: 
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Note that the regularization term 2c w
r  is removed 

from the approximated objective function ( , )appl w b
r  . 

This is because 

[ ]{ }1 log 1 exp( ( ) 1 ) max(0, ( ) 1)i i i iy x w b y x w bγ
γ

+ − ⋅ − + ≥ − ⋅ − +
r r r r

where the equality is taken only when γ → +∞ . 
Therefore, we can always choose constant 0γ >  to 



 

 

make the approximated objective function ( , )appl w b
r  

equal to the true one ( , )SVMl w br . In effect, constant γ 
plays the similar role as the regularization term. An 
appropriate choice of γ will lead to less generalization 
error. This point will be further discussed later. 

Let xr  be the current feature vector and ( )g xr  be the 
new feature that is introduced to the current SVM 
model. Let ( , )appl w br  be the approximated objective 

function that only uses the old features xr , and 
' ({ , }, )appl w bαr  be the approximated objective function 

that uses both old features xr  and the new feature ( )g xr . 

Therefore ' ({ , }, )appl w bα
r  can be expressed as follows: 

{ }

' ({ , }, )

1 log 1 exp( ( ( ) ))

app

i i ii

l w b

y x w g x b

α

γ γ α
γ

=

+ − ⋅ + −∑

r

r r r  (6) 

where α  stands for the weight of the new feature and 
b’  stands for the new threshold value. In the above 
expression for the new objective function, we assume 
both the weights for the old features, i.e., wr , and the 
threshold value b are almost unchanged with the 
inclusion of the new feature ( )g xr . This is a reasonable 
assumption when the classification error of an SVM 
using the old features xr  is low and the induced feature 
will not result in a large change in the SVM model.  

To find an effective new feature ( )g xr , we consider the 
difference between the two objective functions: 
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where ( )iH xr  is defined as ( ) ( ) 1i i iH x y x w b= ⋅ − −
r r r . 

Using the inequality log(1 )x x+ ≤ , we have an upper 
bound for the difference of two objective functions as: 

[ ]
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To remove the interaction between the induced feature 
( )g xr  and the weight α, we further assume the outputs 

of ( )g xr  fall into the interval [-1,1]. Based on the 

inequality 1 1  for [ 1,1]
2 2

x x xe e e xλ λ λ−+ −   ≤ + ∈ −   
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, 

the upper bound in Equation (8) can be further 
simplified as: 
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The first two terms in the above equation are not related 
to the induce feature and therefore can be ignored. The 
third term comprises of a summation over all the 
training examples with each example contributing 

( )
1 exp( ( ))

i i

i

y g x
H xγ+

r

r . Therefore, a good feature function 

( )g xr  that minimizes the quantity in Equation (8) can 
be obtained by learning a classification model over the 
training examples that are weighted by the factor 

1
1 exp( ( ))iH xγ+

r . This factor gives high weights to 

misclassified examples in which ( )iH xr  are negative, 
and low weights to correctly classified examples where 

( )iH xr  are positive. This is similar to the weight 

distribution ( )H xe−
r

 used in AdaBoost but with two 
important distinctions: 

1) The weights used by the proposed feature induction 

algorithm is bounded, i.e., 1 1
1 exp( ( ))iH xγ

<
+

r  , while 

the weights used by AdaBoost is unbounded. This 
bounded nature allows the proposed algorithm to avoid 
over-emphasis on the misclassified examples.  

2) In the proposed weights for the training examples, 
constant γ controls the tradeoff between the training 
error and the model complexity. With a large value of γ, 
more weights are assigned to the misclassified 
examples and therefore training errors can be reduced 
more efficiently. On the other hand, a small γ will result 
in less weight assigned to the misclassified examples 
and less chance to over-fit training data. Therefore, 
constant γ  has the similar impact on the generalization 
error as the regularization term in an SVM model.  

The remaining question is how to determine the 
appropriate value for constant γ , which has been 
justified as an important factor in the above discussion. 
Since the introduction of γ  is to approximate the 
original objective function of an SVM model in 
Equation (3), the optimal γ  can be found by minimizing 



 

 

the difference between the two objective functions 
( , )appl w br  and SVMl , i.e., 

( )2* arg min ( , )app SVMl w b l
γ

γ
∈ℜ

= −
r

 (9) 

It can be seen that that function ( )2
( , )app SVMl w b l−
r  is a 

convex function with regard to γ, which can be easily 
justified by its second order derivative. Therefore, there 
is a global minimum solution for γ. Standard 
optimization algorithms such as conjugate gradient and 
the Newton method can be applied to solve the 
optimization problem in Equation (9).  

Figure 1 summarizes the proposed feature induction 
algorithm for SVMs, which alternatively applies the 
procedure of computing weights and the procedure of 
training a new classification model. 

4.  Experiments 

In this experiment, we will examine the effectiveness of 
the proposed feature induction algorithm for SVM. 
Particularly, we will address the following three 
questions: 

1) How effective and robust is the proposed feature 
induction algorithm for improving classification 

accuracy of SVMs? 50 different nonlinear features are 
generated for each experiment and the change of testing 
errors using linear SVM model with respect to the 
number of induced features are examined.  

2) How effective is the proposed feature induction 
algorithm compared to SVMs using nonlinear kernels? 
SVMs with polynomial kernels and a RBF kernel are 
experimented and their results are compared with those 
using the feature induction algorithm. 

3) How effective is the proposed feature induction 
algorithm compared to AdaBoost? The AdaBoost 
algorithm using a linear SVM as its basis classifier is 
run over the same set of datasets and its results are 
compared to the feature induction algorithm. 

Data Set # Examples # Features 

ionosphere 351 341 

breast_cancer 268 9 

spam 4601 58 

cmc 1473 10 

people 3840 9 

outdoor 3500 126 

Table 1: Statistics of Experimental Datasets 

Six different datasets are used in experiments: four of 
them are from the UCI machine learning repository and 
the other two are from real world applications. The 
statistics of all eights datasets are listed in Table 1. 
‘People’ and ‘Outdoors’ are the two datasets from 
image classification tasks: dataset ‘People’ is used for 
the task of identifying scenes that have more than two 
people, and dataset ‘Outdoor’ is used for the task of 
identifying outdoor scenes. Both are data samples used 
for TREC video retrieval evaluation (TRECVID, 2003). 

In the experiments, we choose the decision tree 
algorithm (C4.5, Quinlan, 1993) to be the classification 
model for the proposed feature induction algorithm. 
This is because the decision tree algorithm can 
introduce nonlinear interactions between multiple 
features through conjunctions of Boolean literals. A 
Newton method is used to find γ that optimizes 
Equation (9). To further prevent over-fitting the training 
data, we set the upper bound for γ to be 50 in the 
experiments. The WEKA SVM implementation (Witten 
& Frank, 1999) is used for experiments. The kernel 
functions used in comparison are a RBF kernel and 
polynomial kernels with degrees ranging from 1 to 5. 
The maximum number of features induced by the 
proposed algorithm is 50. Unless specified, all 
experiments are conducted using the 10-fold cross 
validation, with 90% of the data used for training and 
the remaining 10% for testing.  

Feature Induction for SVM 

F: a set of features 1 2{ , ,..., }Df f f=F  

W: weights for training examples 
1 2{ , ,..., }NW W W=W  

D: training examples 1{ , }N
i i ix y == < >D r  

Initialization:  

• W ={1, 1, …,1} 

• F = {all the original features} 
Repeat until the desired performance 

• Train a SVM model using feature set F 
• Compute W using  [ ]1/ 1 exp( ( ))i

iW H xγ= +
r  

• Sample examples according the distribution 
/i j

jW W∑  
•  Train a classification model 

( ) : [ 1...1]g x → −Xr  using the sampled 
examples 

•  { , ( )}g x←F F r  
Figure 1: Description of the feature induction 
algorithm for SVMs 



 

 

4.1  Experiment I: Effectiveness and Robustness of 
The Feature Induction Algorithm 

Figure 2 displays both the training error and the testing 
errors of a linear SVM model that uses the proposed 
feature induction algorithm for six different datasets. 
Each solid line represents the change of training errors 
with respect to the number of induced features. Each 
dash-dot line represents the change of the 
corresponding testing errors. First, for all datasets, the 
induced features are able to significantly reduce the 
training error of a linear SVM model. The most 
noticeable case is dataset ‘ionosphere’, in which the 
training error has been reduced from 5.6% to zero. This 
fact indicates that the approximation used in the 
previous analysis is valid and reasonably accurate. 

Second, despite of the minor fluctuation in testing 
errors, for all datasets, the overall trend is that the more 
the induced features are, the smaller the classification 
error is. Notice that although datasets such as ‘people’, 
‘cmc’, and ‘breast_cancer’ have no more than 10 
features, by introducing 50 new nonlinear features, we 
are still able to reduce the testing error of a linear SVM 
model without significantly overfitting training data. 
The most noticeable case is dataset ‘breast_cancer’, in 
which a significant drop in the testing error is observed 
when the number of induced features is between 7 and 
9. However, with more induced features, we see that the 
testing error for dataset ‘breast_cancer’ keeps 
decreasing. This trend is consistent with the analysis 
presented in the introduction section. Explicitly induced 
new nonlinear features can be normalized to the same 
scale as the original features. As a result, the 

Poly. Degree breast_cancer ionosphere cmc spam people outdoor 

1 3.97% 9.71% 33.40% 6.67% 41.98% 7.13% 
2 2.06% 10.29% 30.48% 18.07% 45.35% 1.12% 
3 2.79% 16.57% 30.75% 28.61% 45.54% 1.12% 
4 2.65% 18.57% 30.54% 36.43% 45.51% 1.15% 
5 3.82% 18.29% 33.13% 37.17% 45.51% 1.17% 

Table 2: Testing errors for SVM model using polynomial kernels with degree ranging from 1 to 5. 

Figure 2: Training and testing errors of a linear SVM model using the proposed feature induction algorithm 
for six different datasets. Each solid line represents the change of testing errors with respect to the number of 
induced features and each dash-dot line represents the corresponding change in training errors. 
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regularization mechanism in the SVM model is 
effective in preventing the overfitting of training data 
that could potentially be caused by the large number of 
induced features. In contrast, applying nonlinear kernels 
to induce nonlinear features can actually lead to a 
significant overfitting problem. Table 2 presents the 
testing errors of the SVM model using polynomial 
kernels of different degrees. Notice that, for many 
datasets, a high degree polynomial kernel can 
significantly degrade the SVM performance. For 
example, compared to a linear SVM model (poly. 
degree equals 1), using a polynomial kernel of degree 5 
results in a substantially worse classification error for 
almost all datasets except ‘outdoor’ as shown in Table 
2. The most noticeable case is dataset ‘spam’, whose 
testing error is only 6.67% for a linear SVM model. 
However, the testing error shoots up to 37.17% when a 
polynomial kernel of degree 5 is used. As discussed in 
the introduction section, this phenomenon can be 
attributed to the fact that nonlinear features are 
introduced implicitly through kernel functions and 
therefore are difficult to be normalized to the same 
scale as the original features. As a result, the 
regularization mechanism in SVM may not be able to 
work appropriately to prevent overfitting problems. 

The trend seen in Figure 2 shows that the increased 
number of induced features can often help improve 
testing accuracy. However, the increased number of 
induced features is associated with increased computing 
costs. Its diminishing gain in accuracy as the number of 
induced features increases suggests a heuristic stopping 
criterion: stop when the gain between the two 
subsequent runs is insignificant.  

4.2  Experiment II: Comparison with Nonlinear 
Kernels 

We apply both polynomial kernels and the RBF kernel 
to introduce nonlinear features for SVMs. Both the 
degree of polynomial kernels and variance for RBF 
kernel are determined through an internal cross 
validation procedure using 20% of training data that are 
randomly selected from the original training pool. The 
same cross validation procedure is applied to determine 
the variance for the RBF kernel. The results of testing 
errors for polynomial kernels and RBF kernels are 

presented in Table 3, together with the results for the 
proposed feature induction algorithm. For the purpose 
of comparison, we also include the testing errors for an 
SVM model using the linear kernel, which is referred as 
baseline model in Table 3. A boldfaced number 
indicates that its testing error is substantially better than 
the baseline model, and an italic font is applied when it 
is substantially worse than the baseline model. First, 
between the two kernel functions, the RBF kernel 
appears to perform significantly better than the 
polynomial kernels for almost all datasets. It manages 
to improve the performance substantially for three out 
of six datasets and achieves the same performance as 
the baseline model for the rest datasets. In contrast, the 
polynomial kernels improve classification accuracy for 
only two out of six datasets while degrading the 
performance for the other three datasets. Second, the 
proposed feature induction algorithm consistently 
performs better than the baseline model for all datasets. 
Particularly, it achieves substantial reduction in testing 
errors for five out of six datasets. This is noticeably 
better than both the RBF and polynomial kernels. Based 
on the above observation, we conclude that the 
proposed algorithm is more robust and effective than 
the nonlinear kernels in terms of inducing nonlinear 
features for the SVM model. 

4.3  Experiment III: Comparison with AdaBoost 

Methods breast_cancer ionosphere cmc spam people outdoor 

baseline 3.97% 9.71% 33.40% 6.67% 41.98% 7.13% 
polynomial 2.69% 13.43% 34.90% 9.50% 45.40% 1.03% 

RBF 2.79% 8.97% 30.30% 6.81% 41.4% 0.50% 
Feature Induction 2.75% 5.14% 29.80% 6.35% 39.32% 4.33% 

AdaBoost 3.20% 12.81% 33.00% 9.37% 41.40% 6.51% 
Table 3: Testing errors for different methods. The baseline model refers to a linear SVM model. A bold 
font is applied when a testing error is substantially better than the baseline model, and an italic font is 
applied when it is substantially worse than the baseline model 
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Figure 3: Training errors of AbaBoost and a linear 
SVM model (referred as baseline). 



 

 

We compare the proposed feature induction algorithm 
for SVMs to the AdaBoost algorithm that uses SVM 
model as its base classifier. For both algorithms, a 
linear kernel is used for the SVM model. The maximum 
number of iterations for AdaBoost is set to be 20. The 
testing errors for AdaBoost are presented in Table 3. 
Compared to the proposed feature induction algorithm, 
AdaBoost appears to be less effective in improving the 
performance of an SVM model. For most datasets, it 
only achieves the same performance as the original 
SVM model. A further examination of training errors 
for AdaBoost in Figure 3 indicates that the AdaBoost 
algorithm cannot even reduce the training errors 
significantly for almost all datasets except ‘people’. 
This can be explained by the fact that both a linear 
SVM model and the AdaBoost algorithm using a linear 
combination model. As a result, the introduction of 
AdaBoost does not change the linear nature of a linear 
SVM model and therefore has little impact on the 
classification accuracy. 

5.  Conclusions 

Induced features can reduce classification errors. In this 
paper, we propose a new feature induction algorithm 
for SVMs. Unlike the kernel method where the number 
of induced features is usually large (even infinite), the 
proposed algorithm only creates nonlinear features that 
can effectively reduce training errors. Specifically, new 
features are induced iteratively. At each step, it weights 
training examples differently according to the outputs 
of the current SVM model. The weighted training 
examples are then used to train a classification model 
that becomes a new feature for the SVM model. 
Empirical studies over both UCI datasets and datasets 
of real applications indicate that the proposed feature 
induction algorithm is not only effective in improving 
the performance of a linear SVM model but also robust 
even when the number of induced features is 
substantially larger than the number of original features.  
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