
Gradient LASSO for feature selection

Yongdai Kim ydkim@stats.snu.ac.kr

Department of Statistics, Seoul National University, Seoul 151-742, Korea

Jinseog Kim jskim@stats.snu.ac.kr

Statistical Research Center for Complex Systems, Seoul National University, Seoul 151-742, Korea

Abstract

LASSO (Least Absolute Shrinkage and Se-
lection Operator) is a useful tool to achieve
the shrinkage and variable selection simulta-
neously. Since LASSO uses the L1 penalty,
the optimization should rely on the quadratic
program (QP) or general non-linear program
which is known to be computational inten-
sive. In this paper, we propose a gradient de-
scent algorithm for LASSO. Even though the
final result is slightly less accurate, the pro-
posed algorithm is computationally simpler
than QP or non-linear program, and so can
be applied to large size problems. We provide
the convergence rate of the algorithm, and il-
lustrate it with simulated models as well as
real data sets.

1. Introduction

Tibshirani (1996) introduced an interesting method for
shrinkage and variable selection, called “Least Abso-
lute Shrinkage and Selection Operator (LASSO)”. It
achieves better prediction accuracy by shrinkage as
the ridge regression, but at the same time, it gives
a sparse solution, which means that some coefficients
are exactly 0. Hence, LASSO is thought to achieve the
shrinkage and variable selection simultaneously.

Knight and Fu (2000) proved some asymptotic results
for LASSO type estimator. Chen et al. (1999) and
Bakin (1999) applied the idea of LASSO to wavelet and
developed a method called “basis pursuit”. Gunn and
Kandola (2002) applied LASSO to the kernel machine,
and Zhang et al. (2003) applied to smoothing spline
models.
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One problem in LASSO is that the objective function
is not differentiable, and hence special optimization
techniques are necessary. Tibshirani (1996) used the
quadratic program (QP) for least square regressions
and the iteratively reweighted least square procedure
with QP for generalized linear models. Osborne et al.
(2000) proposed a faster QP algorithm for LASSO,
which was implemented by Lokhorst et al. (1999) as
lasso2 package in R system. Recently, Efron et al.
(2004) developed an algorithm closely related to Os-
borne et al. (2000)’s algorithm. The algorithms based
on QP, however, may not be easily applicable to large
data sets when the dimension of inputs is very large.
One such example is the likelihood basis pursuit where
the dimension of inputs is proportional to the sample
size (see Section 6 for details). Moreover, the algo-
rithms may not converge to the optimal solution when
the loss function is other than the squares loss. Be-
sides QP, Grandvalet and Canu (1999) implemented
a fixed point algorithm using the equivalence between
the adaptive ridge regression and LASSO, and Perkins
et al. (2003) developed a stagewise gradient descent
algorithm called grafting. These algorithms, however,
may not lead global convergence.

In this paper, we propose a gradient descent algorithm
for LASSO. The proposed algorithm is computation-
ally simpler than QP or non-linear program, and so
can be applicable to large size problems. We prove
that the proposed algorithm converges to the optimum
under regularity conditions. Also, we provide the con-
vergence rate of the algorithm.

The proposed algorithm is based on the L1 boosting
algorithm proposed by Mason et al. (2000), which is
a regularized boosting algorithm. While the boosting
algorithms such as the AdaBoost (Freund & Schapire,
1997) and LogitBoost (Friedman, 2001) find the op-
timal linear combination of given weak learners, the
L1 boosting algorithm finds the optimal convex com-
bination of weak learners. We utilize the fact that the
optimization problem of the LASSO can be considered



as an extension of the L1 boosting to develop the pro-
posed algorithm.

The paper is organized as follows. In section 2, we ex-
plain the LASSO. In section 3, the proposed algorithm
is presented, and its theoretical properties are studied
in section 4. Results of the empirical studies are given
in section 5, a real dataset is analyzed in section 6, and
discussions follow in section 7.

2. LASSO

We first present the general LASSO setting and give
the three examples. Let (y1,x1), . . . , (yn,xn) be n out-
put/input pairs where yi ∈ Y and xi ∈ X . Here, Y
and X are the domains of the output and input, re-
spectively. We assume that X = X1 ⊗ X2 ⊗ · · · ⊗ Xd

and Xl are subsets of Rpl , l = 1, . . . , d. Also, we write
xi = (xi1, . . . ,xid) where xil ∈ Xl. Finally, we let
β = (β1, . . . , βd) be the corresponding regression co-
efficients, where βl ∈ Rpl .

For a given loss function l, the objective of LASSO is
to find β which minimizes the (empirical) risk

R(β0, β) =
n∑

i=1

l

(
yi, β0 +

d∑

l=1

xilβ
′
l

)

subject to |βl|1 ≤ λl for l = 1, . . . , d. Here λl ≥ 0 and
|βl|1 =

∑pl

k=1 |βlk|.

Example 1. Multivariate linear regression

Let (y1, z1), . . . , (yn, zn) be n output/input pairs. A
multivariate linear regression model is given by

yi = β0 + β1zi1 + · · ·+ βkzik + εi

where εi are assumed to be a mean zero random quan-
tities. The LASSO estimate β̂0, . . . , β̂k is the mini-
mizer of

n∑

i=1


yi − β0 −

k∑

j=1

βjzij




2

subject to
∑k

j=1 |βj | ≤ λ. This problem can be em-
bedded into the general setting of the LASSO given in
the beginning of section 2 with d = 1, p1 = k, xi1 =
(zi1, . . . , zik), β1 = (β1, . . . , βk) and l(y, a) = (y−a)2.

Example 2. Multivariate logistic regression

A multivariate logistic regression model for two class
classification problems is given by

logit Pr(yi = 1|zi) = f(zi) (1)

where
f(zi) = β0 + β1zi1 + · · ·+ βkzik.

Here, yi ∈ {0, 1} and logit(x) = log(x/(1 − x)). The
LASSO estimate β̂0, . . . , β̂k is the minimizer of the neg-
ative log likelihood

n∑

i=1

[
−yif(zi) + log

(
1 + ef(zi)

)]

subject to
∑k

j=1 |βj | ≤ λ. The general LASSO set-
ting of the multivariate logistic regression is the same
as that of the multivariate linear regression except
l(y, a) = −ya + log(1 + ea).

Example 3. Likelihood Basis pursuit

The likelihood basis pursuit model with second or-
der interaction terms for classification is basically the
same as (1) except f(z) is modelled via the functional
ANOVA (analysis of variance) decomposition

f(z) = β0 +
p∑

j=1

fj(zj) +
∑

j<k

fjk(zj , zk). (2)

Then, we assume that fj and fjk are elements of the
reproducing kernel Hilbert space (RKHS) Hj and Hjk

with the reproducing kernels Kj and Kjk, respectively.
Motivated by Kimeldorf and Wahba (1972), we assume
that

fj(zj) =
n∑

r=1

crjKj(zrj , zj)

and

fjk(zj , zk) =
n∑

r=1

crjkKjk((zrj , zrk), (zj , zk)).

This model is considered by many authors including
Gunn and Kandola (2002) and Zhang et al. (2003).
Zhang et al. (2003) proposed to estimate crj and crjk

by minimizing
n∑

i=1

l(yi, f(zi))

subject to
∑n

r=1

∑p
j=1 |crj | ≤ λ1 and∑n

r=1

∑
j<k |crjk| ≤ λ2. This problem can be

embedded into the general setting of the LASSO
with d = 2, (p1, p2) = (np, np(p − 1)/2) and
xi1 = (Kj(zrj , zij), r = 1, . . . , n, j = 1, . . . , p),xi2 =
(Kjk((zrj , zrk), (zij , zik)), r = 1, . . . , n, j < k),
β1 = (crj , r = 1, . . . , n, j = 1, . . . , p), and
β2 = (crjk, r = 1, . . . , n, j < k).



3. Algorithm

We first assume that the intercept term β0 = 0. Let
wl = βl/λl and let x̃il = λlxil. Then, the equivalent
problem is to find w = (w1, . . . ,wd) which minimizes

R(w) =
n∑

i=1

l

(
yi,

d∑

l=1

x̃ilw
′
l

)

subject |wl|1 ≤ 1 for l = 1, . . . , d.

Let zlk = (x̃1lk, . . . , x̃nlk) ∈ Rn for k =
1, . . . , pl and l = 1, . . . , d and let zl be the
n × pl matrix of (z

′
l1, . . . , z

′
lpl

). For a given vec-
tor f ∈ Rn, define C(f) =

∑n
i=1 l(yi, fi) and

let ∇C(f) = (∂C(f)/∂f1, . . . , ∂C(f)/∂fn) and
φ(f, zlk) = min{〈∇C(f), zlk〉, 〈∇C(f),−zlk〉}. Here,
〈a,b〉 =

∑n
i=1 aibi for a,b ∈ Rn.

Let Fl = {zl1, . . . , zlpl
} ∪ {−zl1, . . . ,−zlpl

} and let
co(Fl) is the convex hull (the smallest convex set which
contains Fl). Then, the objective of LASSO is to find
f̂ where

f̂ = argminf∈SC(f)

where S = co(F1)⊕· · ·⊕ co(Fd). The basic idea of the
gradient LASSO is to find f̂ sequentially as follows.
Suppose f̂ =

∑d
l=1 f̂l where f̂l ∈ co(Fl), Fl are the

current estimates of f̂l and F =
∑d

l=1 Fl. For each
l, the gradient LASSO finds a direction fl ∈ Fl such
that C(F +α(fl−Fl)) decreases most rapidly for some
α ∈ [0, 1] and updates F to F + α(fl − Fl). Note that
F + α(fl−Fl) is still in S. Now, the Taylor expansion
implies

C(F + α(fl − Fl)) ≈ C(F ) + α〈∇C(F ), fl − Fl〉.
Hence, the desired direction fl is the one which min-
imizes 〈∇C(F ), fl〉. By summing up the above argu-
ments, we propose the gradient descent algorithm for
LASSO as follows.

Gradient descent algorithm for LASSO

1. Initialization: Let wl = 0 for l = 1, . . . , d and m = 0.

2. Repeat until converges

(a) Fml = zlw
′
l and Fm =

∑d
l=1 Fml.

(b) Find (l, k) which minimizes φ(Fm, zlk).

(c) If φ(Fm, zlk) = 0, then stop the algorithm

(d) Else

i. Let γ = −sign〈∇C(Fm), zlk〉.
ii. Let

α̂ = argminα∈[0,1]C(Fm + α(γzlk − Fml))

iii. Let wlj = (1 − α̂)wlj for j 6= k and wlk =
(1− α̂)wlk + γα̂.

iv. m = m + 1.

When β0 is to be estimated, we put the constraint
on β0 as |β0| ≤ λ0 and let xi0 = 1. Then, we ap-
ply the above algorithm with the augmented input
x∗i = (xi0,xi). If λ0 is sufficiently large that the
LASSO estimate β̂0 satisfies |β̂0| ≤ λ0, we get the de-
sired estimate. For the choice of λ0, we recommend
λ0 = ηβ̂∗0 where η > 1 and β̂∗0 is the minimizer of∑n

i=1 l(yi, β0). Our experience confirms that η ∈ [2, 3]
works well.

Remark. When d = 1, the proposed algorithm is the
same as the L1 boosting algorithm (Mason et al., 2000)
with F1 as the set of weak learners. The original idea
of boosting proposed by Freund and Schapire (1997) is
to combine weak learners to make a strong committee.
Later, Mason et al. (2000), Friedman et al. (2000),
and Friedman (2001) proved that for a given set of
weak learners F , the boosting algorithm essentially
finds the optimal function F ∈ lin(F) which minimizes
the cost functional C(F ) =

∑n
i=1 l(yi, F (xi)) sequen-

tially where lin(F) is the set of all linear combinations
of weak learners in F . However, lin(F) is too large that
the overfitting emerges in particular for noisy data. To
avoid this problem, Mason et al. (2000) proposed the
L1 boosting algorithm, which finds the optimal con-
vex combination of weak learners instead of the opti-
mal linear combination. Recently, Lugosi and Vayatis
(2004) justified L1 boosting theoretically by proving
the Bayes risk consistency. Note that even if we are to
find the optimal function F, the cost functional C de-
pends on F only through F (x1), . . . , F (xn). Hence, we
can say that the L1 boosting algorithm is to find the
optimal convex combination of vectors {zf , f ∈ F}
where zf = (f(x1), . . . , f(xn)), which is the exactly
same as the objective of the gradient LASSO with
d = 1. There are two important implications in this
similarity. First, using the above algorithm, we can
extend the L1 boosting algorithm with more than one
side condition. Second, the theoretical results of the
gradient descent algorithm for LASSO in the next sec-
tion can be applied to the L1 boosting directly. In
particular, the convergence rate is new.

4. Convergence Analysis

We assume that C is convex and satisfies the Lipschitz
with Lipschitz constant L on S. That is, for any two



vector g and h in S,

‖∇C(g)−∇C(h)‖ ≤ L‖g − h‖

where ‖g − h‖2 =
∑n

i=1(gi − hi)2. We assume that S
is a bounded set. Let M = supg,h∈S L‖g − h‖2. Let
C∗ = infF∈S C(F ) and let ∆C(F ) = C(F )− C∗. The
following theorem is the main result of this section.

Theorem 1

∆C(Fm) ≤ 2M

m + 2
.

We start with the two lemmas.

Lemma 1 For any F ∈ S,v ∈ co(Fl) and α ∈ [0, 1],

C(F +α(v−Fl)) ≤ C(F )+α〈∇C(F ),v−Fl〉+ Mα2

2
.

Proof. Define Φ : R → R by Φ(α) = C(F +α(v−Fl)).
Let Φ

′
(α) = dΦ(α)/dα. Then, we have

Φ
′
(α) = 〈∇C(F + α(v − Fl)),v − Fl〉.

Hence,

|Φ′
(α)− Φ

′
(0)|

= |〈∇C(F + α(v − Fl))−∇C(F ),v − Fl〉|
≤ ‖∇C(F + α(v − Fl))−∇C(F )‖‖v − Fl‖
≤ Lα‖v − Fl‖2

for α ∈ [0, 1]. The first inequality is by Cauchy-
Schwarz inequality. Thus,

Φ
′
(α) ≤ Φ

′
(0) + Lα‖v − Fl‖2

= 〈∇C(F ),v − Fl〉+ Lα‖v − Fl‖.

Hence,

Φ(α)− Φ(0)

=
∫ α

0

Φ
′
(s)ds

≤
∫ α

0

(〈∇C(F ),v − Fl〉+ Ls‖v − Fl‖2
)
ds

= α〈∇C(F ),v − Fl〉+
L

2
‖v − Fl‖2α2.

Since L‖v − Fl‖2 ≤ M, the proof is done. ¤

Lemma 2 For any given F ∈ S, let v be a vector in
Fl which minimizes 〈∇C(F ),v − Fl〉 and let

α̂ = argminα∈[0,1]C(F + α(v − Fl)).

Then,

∆C(F + α̂(v − Fl))

≤
{

∆C(F )− ∆C(F )2

2M if ∆C(F ) ≤ M
M
2 otherwise

Proof. For given F ∈ S, define the Bregman diver-
gence d(g) on co(Fl) by

d(g) = C(g)− C(F )− 〈∇C(F ),g − Fl〉.
Note that infg∈co(Fl) d(g) ≥ 0 for all F ∈ S since C is
convex. Hence, we have

〈∇C(F ),v − Fl〉 ≤ C(v)− C(F ) ≤ −∆C(F )

since C(v) ≥ C∗. Hence, Lemma 1 implies that

∆C(F +α(v−Fl)) ≤ ∆C(F )−α∆C(F )+
M

2
α2. (3)

By taking the maximum on the right hand side of (3)
with respect to α on [0, 1], we will get the desired re-
sult. ¤

Proof of Theorem 1. We will use the mathematical
induction. First, consider the case of m = 1. Then,

∆C(F1) ≤ M/2 = 2M/4 ≤ 2M/3 = 2M/(m + 2),

and so Theorem 1 is true for m = 1.

Next, suppose ∆C(Fm) ≤ 2M/(m + 2) for m ≥ 2.
Note that 2M/(m+2) ≤ M for m ≥ 2. Then, we have

∆C(Fm+1) ≤ ∆C(Fm)− ∆C(Fm)2

2M
.

Since x− x2/2M is increasing on [0,M ], we have

∆C(Fm+1) ≤ 2M

m + 2
− (2M)2

2M(m + 2)2

=
2M

m + 2
− 2M

(m + 2)2
≤ 2M

m + 3
,

which completes the proof. ¤

Remark. The convergence rate of the algorithm to
find the optimal convex combination of elements in
the set S has been studied by many authors including



Table 1. Linear regression model

λ 1 2 3 4 5
Gradient algorithm

deviance 560.69 471.05 419.66 388.90 371.71
(s.d) 115.74 97.64 89.60 86.36 86.02

nonzero’s 1.96 3.50 5.22 6.64 7.94
(s.d) 0.95 1.18 1.28 1.40 1.25

QP program
deviance 555.80 464.82 411.67 380.15 362.43

(s.d) 113.95 96.37 89.31 86.29 85.44
nonzero’s 1.94 3.52 5.30 7.08 8.52

(s.d) 0.91 1.16 1.27 1.43 1.33

Jones (1992), Barron (1993) and Zhang et al. (2003).
In particular, Zhang et al. (2003) considered the se-
quential greedy approximation algorithm which up-
dates the current convex combination Fm to the new
one Fm+1 by (1− α̂)Fm + α̂f̂ where

(α̂, f̂) = argminf∈S,α∈[0,1]C((1− α)Fm + αf).

He proved that ∆C(Fm) = O(m−1). Since the sequen-
tial greedy optimization algorithm is the fastest se-
quential algorithm, Theorem 1 implies that the con-
vergence rate of the gradient descent algorithm for
LASSO is almost optimal.

5. Simulation

In this section, we compare the performance of the
gradient descent algorithm with the standard QP algo-
rithm by simulation. We first consider the multivariate
linear regression model given as

y = β0 + β1z1 + · · ·+ β10z10 + ε.

The inputs zi are generated independently from the
standard normal distribution. Also, ε follows the stan-
dard normal distribution. We set the true value of β at
(2,−0.5, 1, 0, 2, 0, 0, 0, 0, 0) and let β0 = 0. We generate
50 data sets with 50 samples from the above model.
Table 1 compares the proposed algorithm with the QP.
The results are calculated based on the 50 data sets of
the sample size 50. For the QP program, we use the
algorithm of Osborne et al. (2000) implemented in R
system.

The deviance (the empirical risk) of the gradient al-
gorithm is slightly larger than that of the QP. This
is because the gradient algorithm is asymptotic in the
sense that it converges to the optimum when the num-
ber of iteration goes to infinite. We stop the algorithm
when the decrease of the deviance is small. We can re-
duce the deviance of the gradient algorithm more by
iterating the algorithm more. Note that the number
of nonzero coefficients are almost identical.

Table 2. Logistic regression model

λ 1 2 3 4 5
Gradient algorithm

deviance 23.52 18.59 15.81 14.09 12.92
(s.d) 1.52 2.14 2.60 2.99 3.34

nonzero’s 2.06 3.42 4.70 5.94 6.58
(s.d) 0.68 1.25 1.34 1.60 1.64

QP program
deviance 23.49 18.52 15.63 13.78 12.51

(s.d) 1.53 2.11 2.55 2.94 3.30
nonzero’s 2.04 3.44 4.80 5.94 6.96

(s.d) 0.67 1.26 1.32 1.70 1.65

Table 2 summarizes the results of the multivariate lo-
gistic regression. We let f(z) = β0+β1z1+ · · ·+β10z10

with β = (2,−1, 0, 4, 0, 0, 0, 0) and β0 = 0. The results
are similar to those for the multivariate linear regres-
sion model. To sum up, the gradient descent algorithm
for LASSO proposed in the paper finds the almost op-
timum with less computation than the QP does.

6. Analysis of Pima Indians Diabetes
dataset using the Likelihood Basis
Pursuit

In this section, we analyze the Pima Idians Di-
abetes data using the likelihood pursuit. The
data set, which has been taken from the UCI
Repository Of Machine Learning Databases at
http://www.ics.uci.edu/∼mlearn/MLRepository.html,
has 768 observations on 8 input variables and two
class output variable. The 8 input variables and one
output variable are

1. “preg” : Number of times pregnant

2. “glu” : Plasma glucose concentration (glucose tol-
erance test)

3. “pres” : Diastolic blood pressure (mm Hg)

4. “tri” : Triceps skin fold thickness(mm)

5. “insu” : 2-Hour serum insulin (mu U/ml)

6. “mass” : Body mass index (weight in
kg/(height in m)2)

7. “pedi” : Diabetes pedigree function

8. “age” : Age (years)

9. “diabetes” : Class output variable (500 “−” and
268 “+” tests for diabetes)



The model starts with the main and second order in-
teraction terms as in (2). We let λ1 = λ2 = λ and set
λ = 6 which is selected by the 5-fold cross-validation.
The Gaussian kernel with the scale parameter recipro-
cally proportional to the dimension of inputs is used.
Figure 1 shows the change of the deviance on the num-
ber of the iteration, which shows that the gradient
algorithm for LASSO converges fairly fast. Figure
2 presents the L1 norm of the selected components.
Here, L1 norm of a given component fj(zj) is defined
by

∑n
i=1 |

∑n
l=1 cljKj(zlj , zij)| /n. L1 norm of the sec-

ond order interaction term is defined similarly. The
all main effect terms except that for “tri” are selected,
and for the interaction term, “tri*ins” is selected. Fig-
ures 3 and 4 draw the functional relation of the 4 most
important main effect terms and one interaction term,
respectively. All the functions are rather picky, which
is mainly due to the shape of the kernel (Gaussian
kernel). There is no special reason for choosing the
Gaussian kernel. Different choice of kernels such as
polynomial or spline kernels will result in smoother
curves.
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7. Discussion

In this paper, we proposed the gradient descent
method for LASSO, which is computationally simpler
and faster than the standard QP program even though
it is less accurate than QP or nonlinear program. We
showed theoretically as well as empirically that the
proposed algorithm converges fairly fast and gives re-
liable results

One interesting feature of the proposed algorithm is
that the convergence rate is independent on the di-
mension of input. The convergence rate is important
since less iteration gives more sparse solutions. Hence,
the proposed algorithm is well suited with problems
with large dimensional inputs such as the likelihood
basis pursuit. In the analysis of the Pima Indians Di-
abetes dataset, the algorithm converges to the near
optimum only after 50 iterations. This is surprising
since the number of components is 36. Also, the final
model, which contains only 8 components out of 36, is
very sparse.

One problem of the proposed algorithm is that the
convergence speed is rather slow at the near optimum.
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Figure 3. The 4 most important main effects

Figure 1 represents the typical behavior of the de-
viance. That is, the deviance is dropped very fast in
the early stage, and then it decreases slowly. This
is why the deviances of the proposed algorithm are
slightly larger than those of the QP in our simulation
results. Accelerating the convergence speed at the near
optimum is worth pursuing.
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