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Abstract

Information Gain is a well-known and
empirically proven method for high-dimensional
feature selection. We found that it and other
existing methods failed to produce good results
on an industrial text classification problem. On
investigating the root cause, we find that a large
class of feature scoring methods suffers a pitfall:
they can be blinded by a surplus of strongly
predictive features for some classes, while
largely ignoring features needed to discriminate
difficult classes. In this paper we demonstrate
this pitfall hurts performance even for a
relatively uniform text classification task. Based
on this understanding, we present solutions
inspired by round-robin scheduling that avoid
this pitfall, without resorting to costly wrapper
methods. Empirical evaluation on 19 datasets
shows substantial improvements.

1. Introduction

A customer support division of Hewlett-Packard
approached our data-mining department in HP Labs with
an apparently straightforward text classification task:
sorting millions of technical support documents into topic
categories. In the process of developing a machine
learning solution, we found that well-established feature
selection methods failed to perform tolerably.

Our in-depth study of the problem revealed that there is a
remarkably pervasive pitfall in most multi-class feature
scoring methods, such as Information Gain, Mutual
Information and Chi-Squared. It arises in situations where
one or a few ‘easy’ classes have many strongly predictive
features, and other ‘difficult’ classes have only weakly
predictive features. All feature selection methods that
evaluate features independently will be consistently
drawn to the many strong predictors of the easy classes,
and will be distracted from selecting features to help
discriminate the difficult classes. In the extreme, a
tremendous surplus of excellent predictive features for
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one class can effectively hide all useful features for
discerning other classes. This is not far fetched: for
example, consider classifying email into folders, where
one particular folder represents a very dissimilar class,
e.g. German or spam.

We encountered this problem—which we call the ‘siren
pitfall’—in the technical support classification task, and
we speculate that it may be more common in practical
industrial tasks than in the typically homogeneous
benchmark datasets often studied in the research
literature. Nonetheless, this study shows the issue is
pervasive even in homogeneous tasks.

In Section 2 we analyze and illustrate the pitfall for an
example dataset. Rather than exhibit it for our industrial
task—which may leave the reader unconvinced as to how
frequently the pitfall may occur in practice—we
demonstrate that it occurs even with a well balanced,
homogeneous task: a dataset of research paper abstracts in
36 categories representing different fields of computer
science with exactly 50 cases for each class.

Given this understanding, we then present in Section 3 a
family of feature selection algorithms, motivated by
round-robin allocation. They avoid the risks of completely
independent feature evaluation, and at the same time
avoid compute-intensive wrapper methods. In Section 4
we evaluate the performance improvement on a set of 19
multi-class text classification tasks. We summarize and
suggest future work in Section 5. The balance of the
introduction further defines the scope of this work, and
contrasts with related work.

1.1 Scope and Related Work

The scope of this paper implicates all feature scoring
methods that evaluate features independently. This
excludes wrapper methods, which apply general search
mechanisms, such as sequential forward selection or
genetic search, with repeated calls to the induction
algorithm subroutine to evaluate various subsets of
features (Hall & Holmes, 2003; Kohavi & John, 1997).
Wrapper methods effectively consider the joint
distribution of features—to the extent that the underlying
induction algorithm can. However, they involve great
computational cost and are inappropriate for high
dimensional tasks. In text classification, the number of
potential word features commonly exceeds the number of
training examples by more than an order of magnitude,



not to mention the explosive number of potential word
phrase features (Mladenic & Grobelnik, 1998). In
contrast, feature-scoring methods, such as Information
Gain, run much faster because they evaluate features
independently without considering feature interactions
and without induction.

There has been a number of feature selection studies
applied to binary (two-class) classification tasks (e.g.
Forman, 2003; Guyon, Weston, Barnhill & Vapnik, 2002;
Mladenic & Grobelnik, 1999). This paper, however,
focuses on multi-class or I-of-M tasks: choosing one of M
nominal classes, where M>2. Applications include filing
documents in folders, or routing undirected customer
email to the most appropriate department.

Some feature selection studies have been performed in the
framework of fopic identification or N-of-M tasks (e.g.
Yang & Pedersen, 1997). This formulation comprises a
set of M independent binary classification tasks. The
solution to such problems is to provide each of the M
binary classifiers with its own optimized feature selection.
In some situations, however, it may be necessary due to
system constraints to select one set of features to be used
by all binary classifiers; in this case, this paper applies.

2. Pitfall in All Scoring Methods

Feature scoring methods consider each feature
independently, examining the counts in the contingency
table across classes. Mainstream scoring methods include
Information Gain (IG), Mutual Information, Chi-Squared
(CHI), and variations on Term Frequency x Inverse
Document Frequency (Mladenic et al., 1999). Yang and
Pedersen (1997) performed a controlled study in the text
classification domain and found CHI and IG to be top
performers. What is common to all of these feature-
scoring methods is that they conclude by ranking the
features by their independently determined scores, and
then select the top scoring features.

The level of difficulty of text classification tasks naturally
varies. As the number of distinct classes increases, so
does the difficulty, and therefore the size of the training
set needed. In any multi-class text classification task,
inevitably some classes will be more difficult than others
to classify, that is, they receive substantially lower
precision and/or recall for that category compared with
the others. Reasons for this may be:

(1) very few positive training examples for the class,
and/or

(2) lack of good predictive features for that class.

In the former case, there is little option but to obtain more
training cases for that class. As a small consolation,
classes that account for only a small fraction of the
probability distribution can likewise have only a small
effect on overall accuracy (or micro-averaged F-measure).
However, just because a class has a small representation

in the training set does not mean that in deployment the
precision/recall for that class will not be important. For
example, in a movie recommender system, although one
may have only seen and ranked a few excellent movies
and many mediocre ones, the precision for the minority
class is most important.

Our hypothesis is that in case (2) above, where it is hard
to get good predictive features for some class(es), existing
feature scoring mechanisms will focus on the features that
are useful predictors for other, easier classes, and will
ignore the difficult classes—the ‘siren pitfall.” This is
exactly the wrong thing to do—difficult classes need, if
anything, more attention and features selected for them,
so that they can be better classified.

2.1 Empirical Demonstration of the Siren Pitfall

We further hypothesize that this pitfall occurs pervasively,
even in  well-balanced  ‘research  quality’  ftext
classification problems. We demonstrate this by a detailed
analysis on a balanced text classification task. As a
running example, we take the task of classifying research
paper abstracts into various fields of computer science.
For the dataset, we extracted a set of abstracts and their
associated classifications within the Cora topic
categorization that was once made available by
Whizbang.com. We selected from their many topics 36
classes, evenly distributed among 6 broad topic areas, in
order that the task should be relatively uniform in
difficulty (for comparison, an inhomogeneous task might
have included a few classes from a branch of biology).
To control for problem (1) above, we populated each class
with exactly 50 training cases. The many classes make for
a low majority-guessing accuracy, so performance above
1/36=2.8% accuracy is attributable to useful features, not
chance. (The features are Boolean, indicating whether a
specific word appears in the document, where a word
consists of consecutive alphanumeric characters, forced
lowercase, with no stemming and no stopword list. We
include all words except very common words appearing
in >25% of the documents, and rare words occurring in
fewer than three documents.)

Even in a task with fairly homogeneous and uniform-
sized classes, there is significant variation in the difficulty
of the individual classes. To illustrate this, we measured
the precision, recall, and F-measure for each individual
class. (Precision P = true positives / all guessed positives.
Recall R = true positives / all positives in ground truth. F-
measure is their harmonic average = 2 P R/(P+R).) We
used a state-of-the-art classifier: a multi-class one-vs-all
Support Vector Machine (SVM, linear kernel, C=1)
(Witten & Frank, 2000). We selected the top 500 features
via IG (after determining 500 is sufficient for acceptable
performance; see Figure 4). We used 4-fold stratified
cross-validation to reduce random fluctuations in the
measurements due to randomized splits. For each fold, the
feature selector must be re-run from scratch so that no
information leaks from the test set.
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Figure 1. Baseline precision, recall and F-measure performance for each class of the Cora dataset. The 36 classes each have 50

training examples and are ordered here by their F-measure.
Gain—obtained 50% accuracy (& F-measure) overall.
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36 classes, uniform class distribution, sorted by difficulty (F-measure)

Figure 2. Information Gain scores of top features. In each column corresponding to the class ordering used in Figure 1, we plot
the local Information Gain of each feature in distinguishing that class from all other classes. Additionally, we indicate the top
global Information Gain scores via point shapes, e.g. large diamonds mark features included in the global top 25 features.

Figure 1 details the results. For each class, the whisker
plot shows the precision (bent end), recall (straight end)
and F-measure (round marker). The classes are sorted by
their F-measure. Scanning the whiskers, we see that some
classes have a wide discrepancy between their precision
and recall.

The overall macro-average F-measure is 50%, indicated

by the round marker on the y-axis. This is equivalent to
the micro-averaged F-measure, because the class
distribution is uniform. Micro-averaged F-measure is a
per-document measure, so it is heavily influenced by
larger classes, while macro-averaged F-measure gives
equal weight to each class regardless of size. Since
smaller classes tend to be harder to classify and there tend
to be more of them than larger classes, the macro-



averaged F-measure is often said to emphasize the smaller
classes, while micro-averaged F-measure emphasizes the
large classes. Research literature that studies only the
micro-average, therefore, might more easily overlook this
pitfall.

We see there is wide variation in the F-measures across
the classes. In particular, notice the classes HW-High
Performance and HW-Distributed have the worst scores.
Since we have controlled for uneven class distribution
(case 1), by our hypothesis, we expect that the available
features for predicting these difficult classes are weak and
excluded in feature selection. That is, they are weaker
than the features available for other classes, and the
feature scoring mechanism is drawn myopically to those
stronger features.

To verify this, Figure 2 shows a plot of the IG scores of
the top predictive features for each class independently.
The scores for each class are plotted in separate columns,
sorted left-to-right just as in Figure 1. The higher the dot,
more useful the feature is to that class. Each column has
all the features, though in different positions (some out of
view below the x-axis). Notice in general that the more
difficult classes toward the left tend to have fewer good
predictive features.

In selecting features for the baseline in Figure 1, we
computed IG on the global multi-class task, as typically
practiced in the literature. To indicate the global selection
order, we embolden points in Figure 2 that represent top
features selected by the global feature scoring; a globally
selected feature will embolden one dot in each column.
We use different marker icons to label features that are
included in the top 25, top 50, and top 75 globally
selected features; features that were not selected within
that number are represented by small dots. This gives a
view into how the global feature selection mechanism is
allocating features among the classes, and which locally
predictive features it is omitting. Supposing
independence of features for a moment, the more features
selected higher up in each column, the more easily that
class should be to discriminate by the induction
algorithm. A column with none of its best features
selected, e.g. columns 3 and 7, may then be more difficult
to classify. For this reason, we truncate the graph below
at 0.01, so our focus is only on predictive features.

Observe that there is wide variability between the classes
in both the number of ‘best’ features, and the maximum
or average scores of those features. None of the best
features for column 7 have been selected globally.
Columns 2 and 5 show no dots at all—their best features
fall below the x-axis threshold chosen for this graph.
These two classes also have some of the lowest F-
measures. Finally, observe that the top 75 features do not
appear to be ‘fairly’ distributed across the classes. This
lends evidence to our hypothesis that the global feature
allocation does not pay adequate attention to difficult
classes.

Caveats: Looking at the allocation of features in this way
does lend insight, but this evidence is not completely
consistent. For example, class 15 shows a lack of
predictive features, yet achieves a nearly median F-
measure. Measuring IG locally is only a heuristic pointing
towards the best features for each class, and may not be
the optimal metric to use; resolving that question is
outside our scope here, but see Forman (2003). Any
‘imperfections’ in the scoring metric slightly scramble
both the order in which features are selected globally, and
the local ranking of the feature dots in each column.
Finally, features are not independent, and their value to
the classifier depends on what other features are included.

2.2 The Siren Pitfall is Persistent—Non-Solutions

Instead of measuring the global IG, the ‘obvious’ solution
to this problem is to measure the IG score for each class
against the others as we have done, and then take the
maximum score achieved by each feature for any
individual class, a.k.a. Max.IG or Max.Chi (Yang et al.,
1997). The horizontal line in Figure 2 represents the
particular threshold to reap the top 100 features selected
by this proposal. This would certainly do a better job of
distributing the selected features among more classes, but
note, however, that it still suffers from the very problem
we are trying to solve. Observe that difficult classes, such
as 1, 2, 3 and 5 have no features rated above this
threshold, so they would still not receive any allocation.

Moreover, as a Gedanken experiment, should there be a
class with many very strongly predictive features, it
would serve as a lightning rod even for this ‘max’ variant
of feature scoring, completely shielding the other classes
from any allocation of features. For such a dataset,
random feature selection may prove superior. Any
random fluctuations or ‘imperfections’ in the scoring
metric would help it overcome such a situation. This
suggests that a random element in feature selection may
prove beneficial.

Furthermore, this problem persists for any other feature
selection metric and other aggregation functions, such as
the mode, mean, clipped mean, or any general affine
transformation.

Some have criticized the policy of selecting a fixed
number of features for induction, and have instead
proposed the selection method adjust the number of
features chosen based on their distribution in the training
data. For example, Rennie (2001), among others, propose
using a significance threshold on the result of a statistical
test. For such methods, one does not know a priori how
many features will be selected for a new dataset, but for a
given dataset, the significance threshold parameter
effectively skims features off the top just as other scoring
mechanisms, yielding no protection from the siren pitfall.

Although we have demonstrated the pitfall here only for
Information Gain on a single text task, we have conducted



similar experiments yielding similar observations with
other feature selection metrics (including CHI, Max.IG,
weighted Max.IG, and hypothesis testing) and with
another text dataset (fbis of Han & Karypis, 2000). We
omit their analyses for brevity.

3. A Family of Solutions

Desiderata for any solution to the siren pitfall include:

1. The presence of one or a few classes having many
good predictive features should not hide the features
useful for other classes. A (partially) randomized
algorithm would satisfy this, e.g. randomized feature
sets should be robust to the siren effect.

2.  While the discussion above centered on a text task
with a controlled uniform distribution, natural tasks
tend to have significantly skewed class distributions.
Large classes will affect the overall accuracy more
than smaller classes. The algorithm should have the
capability to allocate its attention appropriately. In
contrast, small classes are often difficult to learn and
may therefore have a greater need for more features.

3. It would be desirable if the solution were tunable
when we have an estimate of the future testing class
distribution, which may differ significantly from the
training distribution.

4. Likewise, it would be useful if the solution were
tunable for cost-sensitive classification.

5. It should be reasonably quick to compute for large
numbers of classes and huge volumes of features.
This rules out wrapper search methods.

3.1 SpreadFx[R,M] Feature Selection Family

The basic kernel of the solution applies round-robin turn
taking to let each class propose features. To generalize a
bit, we first propose an abstract family of feature selection
algorithms that is parameterized across two general
dimensions. Any family of algorithms raises more
questions about what its optimal parameterizations may
be. Nonetheless, they can be useful for dissecting a
problem at an abstract level and considering options.
Later we perform an empirical evaluation of the idea for
three instantiations. We begin by presenting the family of
algorithms:

Procedure SpreadFx[R,M](dataset) = ranked list of features

for each class c of dataset:
rank all features according to M for the binary sub-task
of discriminating class c vs. all other classes combined.
store this feature ranking for class c.

while output not complete:
call scheduler R to select a next class c.
select the next feature fx from M’s ranking for c.
append fx to the output, if not already present.

The first parameter R, in its most general form, is a
dynamic scheduling policy among the classes. We present
here two of the simpler policies we studied:'

Round-Robin: This simple policy takes the best feature
suggested from each class in turn.

Rand-Robin: This randomized scheduler, motivated by
the observation on randomization above, selects the next
class randomly with probabilities according to the class
distribution. If the importance of the classes is unequal
and known (e.g. classification costs, or more popular
categories), this information could be used to skew the
selection probability distribution.

The second parameter M is any feature-ranking method
for two-class tasks. This could involve a feature scoring
metric, such as Information Gain or Chi-Squared, but
more generally, it need only return a total order of
features for each class. Absolute scores for the features
are not compared against one another, so different ranking
algorithms might be used for different classes (supposing
there were prior knowledge that particular classes would
benefit from certain known methods, or we as a machine
learning discipline eventually learn in which situations to
apply various feature scoring metrics). Note that the
feature ranking algorithm only need deal with a myopic
two-class task, and so this opens up the possibility even
on multi-class tasks to use methods that can only handle
binary tasks, such as Odds Ratio (Mladenic et al., 1999)
and Bi-Normal Separation (Forman, 2003). Note also that
the sub-tasks may be computed independently and are
amenable to parallelization. The results of the ranking are
used in order, so online or anytime algorithms may be
employed in addition to traditional batch algorithms.
Finally, since the ranking is dependent only on the class
and the dataset, it may be pre-computed and re-used,
unlike algorithms that resample or permute the dataset
and repeatedly call the ranking algorithm.

4. Evaluation

We begin by illustrating the improvement that
SpreadFx[ Round-Robin, IG | makes over traditional 1G
for the 36-class Cora dataset presented earlier. As before,
we performed a 4-fold cross-validation on the dataset,
using multi-class SVM and selecting the top 500 features.
The arrows in Figure 3 show the gain in F-measure for
each class. We see dramatic improvement for most
classes, especially at the left, and a slight decrease for
some of the easy classes on the right—a tradeoff we
expect.

In order to obtain a single performance statistic for the
entire dataset, we macro-average these individual F-
measures. (This is equal to the micro-average F-measure

! Other variants we studied achieved unsurprising hybrid results and are
omitted for clarity and brevity.
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Figure 3. F-measure achieved by SpreadFx[ Round-Robin, IG ] (at arrow tip) vs. the traditional IG from Figure 1 (at arrow tail).

in this case because the class distribution is uniform.) In
this experiment, we achieved an overall F-measure of
61.2%, up 22% from the previous baseline of 50% for
traditional IG. (We repeated this experiment for Naive
Bayes and saw a similar improvement of 12% overall.)

Table 1. Benchmark Datasets

Dataset Source Docs Words Classes

Cora Whizbang 1800 5171 36
fbis TREC 2463 2000 17
Lal TREC 3204 31472 6
La2 TREC 3075 31472 6
Oh0 OHSUMED 1003 3182 10
Oh5 OHSUMED 918 3012 10
Ohl10 OHSUMED 1050 3238 10
Ohl5 OHSUMED 913 3100 10
ohscal OHSUMED 11162 11465 10
Re0 Reuters 1504 2886 13
Rel Reuters 1657 3758 25
trll TREC 414 6429 9
tr12 TREC 313 5804 8
tr21 TREC 336 7902 6
tr23 TREC 204 5832 6
tr31 TREC 927 10128 7
tr41 TREC 878 7454 10
tr45 TREC 690 8261 10
wap WebACE 1560 8460 20

4.1 Improvement over all 19 Datasets

Next we present an evaluation over a large classification
benchmark to test the merit of SpreadFx applied to the
widely practiced IG and CHI methods. Certainly as we
increase the number of features to a very large number,

any feature selection algorithm will begin to provide
many predictive features for all classes. So the primary
hypothesis to test is whether the benefit of SpreadFx is
beneficial at smaller numbers of selected features. That
said, we would also like to see a gain for larger numbers
of features selected.

For the induction algorithm, we chose the multi-class
Support Vector Machine (SVM), as it is considered
among the best in class for text classification, and quite
popular (e.g. Yang & Liu, 1999; Joachims, 1998). We
initially expected that it would be difficult to improve
SVM results. To show that the results are not particular to
SVM, we also demonstrate similar improvement for the
traditional Naive Bayes classifier, which is more highly
sensitive to feature selection.

We performed our evaluations on the Cora dataset, plus
18 other text datasets provided by Han and Karypis
(2000). Refer to Table 1. The classification tasks are
drawn from standard benchmarks such as Reuters,
OHSUMED, and TREC, among others. The datasets
range from M=6 to 36 classes, 2,000 to 31,000 binary
features, and have uneven class distributions with a
median of 1 positive to 17 negative training examples
(and average 1:31). No class is duplicated in different
datasets. For a detailed exposition of the datasets, please
refer to their paper or else Forman (2003). We will gladly
make the feature vectors available on request.

For each dataset and feature selection scheme, we
perform 4-fold cross-validation runs, obtaining the macro-
averaged F-measure across all the classes of the dataset.
We then average these results across five random
stratified cross-validation splits for each of the 19
datasets. (The results for accuracy and even micro-
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average F-measure are qualitatively similar to what
follows and are omitted for brevity.)

Figure 4 presents the results for SVM (left) and the
traditional Naive Bayes classifier (right). Each graph
shows results for the popular multi-class IG metric, as
well as the Max.IG variant and SpreadFx variants for both
of the scheduling algorithms discussed.

First, observe that traditional IG and Max.IG performed
worse than either SpreadFx variant over most of the range
for both classifiers. As we expect, the greatest gain
appears at smaller numbers of features selected, with
Round-Robin providing the best improvement. In
contrast, Rand-Robin at 20 features is equivalent in
performance to plain IG. The best performance over both
graphs is obtained by SVM using Rand-Robin with 500-
1000 features, whereas Round-Robin declines here.
Observe that SVM with 100 features selected via
SpreadFx[ Round-Robin, IG ] has better performance than
IG’s best performance with an order of magnitude more
features, and is better than using all the features, indicated
by the labeled horizontal line. That IG has difficulty

achieving this level of performance may lend to the
popular myth that support vector machines do not benefit
from feature selection. Clearly Naive Bayes is much more
sensitive to feature selection, and Round-Robin leads to a
great performance improvement.

To demonstrate that the siren effect is not peculiar to IG,
we also present the results for CHI and its variants in
Figure 5 likewise. The Round-Robin variant again
dominates in protecting either classifier from the siren
effect. Rand-Robin proved weaker paired with CHI.

5. Conclusion

For all multi-class feature selection methods that perform
independent feature-scoring we have exposed a pitfall
whereby they get distracted from selecting useful features
for difficult classes if there is a supply of strongly
predictive features for easier classes. We demonstrated
this in detail on a dataset that has been -carefully
constructed to have a uniform class distribution and
roughly uniform topical content in each class. Text



classification tasks in real-world settings are rarely this
regular, e.g. classifying email into folders, and would be
even more likely to exhibit this siren pitfall.

We then discussed a parameterized family of algorithms
to distribute the allocation of features among the classes,
presenting two scheduling policies that are simple to
implement. In evaluation on a substantial benchmark, we
found consistent improvements for multi-class SVM and
Naive Bayes over basic IG or CHI, especially at smaller
numbers of features selected. We note that SVM using
features selected by  SpreadFx| Rand-Robin, CHI ]
performed better with 500-1000 features than any other
method, including using all the available features.

The proposed family of feature allocation policies
attempts to be ‘fair’ in distributing attention to all classes,
optionally according to their class distribution or other
estimated cost weighting. We note that there is no
guarantee that such a policy will work better. For
example, suppose there were a large important class for
which no features are predictive—a policy that focuses
features on this large difficult class may ultimately suffer
overall. It could be that allocating that budget of features
to other classes would lead to a much greater overall
improvement in classification. There are certainly few
guarantees in this business. The best we can hope for is
that typical text classification tasks rarely exhibit such
pathological behavior, and so there may be some feature
selection methods that are significantly better and more
robust on typical text classification tasks encountered in
practice.

Potential future work includes verifying the benefit for
other promising classification models, other benchmarks
including non-text and cost-sensitive scenarios, other
scheduling policies, and other base feature selection
metrics, such as weighted Bi-Normal Separation (Forman
2003), which can otherwise be applied only to two-class
tasks. Finally, although we declared at the outset that
wrapper methods are outside the scope of this paper, note
that advances in fast scoring methods, such as proposed
here, should be welcome to research in wrapper methods
for use as potential heuristics to guide their search more
efficiently.
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