Skip to yearly menu bar Skip to main content


Poster

Practical Performance Guarantees for Pipelined DNN Inference

Aaron Archer · Matthew Fahrbach · Kuikui Liu · Prakash Prabhu


Abstract: We optimize pipeline parallelism for deep neural network (DNN) inference by partitioning model graphs into $k$ stages and minimizing the running time of the bottleneck stage, including communication. We give practical and effective algorithms for this NP-hard problem, but our emphasis is on tackling the practitioner's dilemma of deciding when a solution is good enough. To this end, we design novel mixed-integer programming (MIP) relaxations for proving lower bounds. Applying these methods to a diverse testbed of 369 production models, for $k \in$ {2, 4, 8, 16, 32, 64}, we empirically show that these lower bounds are strong enough to be useful in practice. Our lower bounds are substantially stronger than standard combinatorial bounds. For example, evaluated via geometric means across our production testbed with $k = 16$ pipeline stages, our MIP formulations raised the lower bound from 0.4598 to 0.9452, expressed as a fraction of the best partition found. In other words, our improved lower bounds closed the optimality gap by a factor of 9.855x.

Live content is unavailable. Log in and register to view live content