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* Equal contribution



Contributions

* Demonstrate that
Distributional Robustness = Lipschitz Regularization

under generalized conditions and novel characterization of equality

* Polytime estimation of Lipschitz constant for universal function spaces

0 (i) sample comlexity

62
* Reproducing kernel Hilbert space (RKHS) of product kernels
* Applied to robust SVM training



Distributional Robust Risk

* Motivation: data samples deviate from the true distribution

* Given a distribution g on X X Y, minimise the worst-case risk
DRR(f) = supy { Eeyy~vlloss(F(x), )] : cost(u,v) < 1)

where cost.(u,v) =inf, { [ ¢ dm : m couples yu and v }

e Standard duality result using Lipschitz constant of f

DRR(f) < E(x,y)~/,t [lOSS(f(X), Y)] aal llpc(f)



Contribution 1: duality characterization

* Duality result using the Lipschitz constant of f

DRR(f) < E(yyyp [loss(F (), )] +7 - lin.(f)

@ onerous assumptions ruling out many ML problems

¥

(N . . . .
'~/ we generalise and improve upon existing results

@ loose conditions for equality

¥

) we tightly characterize equality

Reference relation f c /i X
(Shafieezadeh-Abadeh et al., 2019, Thm. 14) = conﬁve}.( LlpSChl_tZ marg m‘ norm empirical dist. R4
loss with linear classifier
(Kuhn et al., 2019, Thm. J) < upper semicontinuous norm empirical dist. R
(Kuhn et al., 2019, Thm. 10) = convex, Lipschitz norm empirical dist. R?
. similar to generalised .. .

a0 & /weg Or. / < .S - i ical dist. d

(Gao & Kleywegt, 2016, Cor. 2 (iv)) < Lipschitz p-metric empirical dist R
; < ) i -obabilit rabl
Theorem 1 (this paper) convex, generalised convex, k-positively probabuity separable
= ' measure Banach space

Lipschitz

homogeneous




Contribution 2: polytime Lipschitz constant

* Enforcing Lipschitz by ||Vf (x;)|| needs exponentially many x;

* We show Lipschitz constant can be found in polynomial time
= For a universal function space (RKHS of Gaussian kernel)
= Product kernel in general k(x,1y) = Hj:.l ko(zj,y;)
" Method based on Nystrom approximation for d,, ko (x1,y1)
o Draw samples from a Borel measure on X

= Sample complexity for € error and 1 — 6 probability of Lipschitz constant

O (L N2M?2Q? log 24e)

o Logarithmic in dimensionality

o N., M, Q. depend on kernel spectrum: universal constant for Gaussian and periodical kernel



Experiment

Test accuracy under PGD attacks on the C&W approximation
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